Araştırma Makalesi
BibTex RIS Kaynak Göster

Artificial İntelligence and Applications

Yıl 2024, Cilt: 16 Sayı: 4, 201 - 234, 30.12.2024
https://doi.org/10.52791/aksarayiibd.1574207

Öz

Artificial intelligence (AI) is a field of technology that enables machines to acquire human-like abilities such as thinking, learning, and problem-solving. Emerging as a domain that can make decisions by learning from data through methods like machine learning and deep learning, AI has, in recent years, expanded its reach across a wide range of applications, including healthcare, security, education, law, economics, and finance. This technology is revolutionizing various areas, from industrial processes to the simple routines of daily life, fundamentally transforming the way people work. With the innovations it brings at both individual and societal levels, it not only improves quality of life but also significantly enhances productivity. This article examines artificial intelligence within a theoretical framework, focusing on its subfields, history, and diverse application areas.

Kaynakça

  • Abbas, N., Cohen, C., Grolleman, D.J., & Mosk, B. (2024). Artificial Intelligence Can Make Markets More Efficient and More Volatile (www.imf.org Erişim Tarihi: 29.09.2024).
  • Adrian, T. (2024). Artificial Intelligence and its Impact on Financial Markets and Financial Stability. (www.imf.org Erişim Tarihi: 29.09.2024).
  • Aha, D. W., Kibler, D., & Goldstone, R. L. (1991). Instance-based learning algorithms. Machine Learning, 6(1), 37–66. doi.org/10.1007/BF00153759.
  • AI-Powered Legal Assistance at Your Fingertips, (https://legalmasterai.com. Erişim Tarihi: 08.04.2024).
  • Alkayış, S. (2021). Eğitim Felsefesi Persfektifinden Dijitalleşme ve Eğitim 4.0, Bingöl Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 11(21), 221-237.
  • Allahverdi, N., (2002). Uzman Sistemler Bir Yapay Zekâ Uygulaması. Atlas Yayın-Dağıtım, İstanbul.
  • Alzubi, J., Nayyar, A., & Kumar, A. (2018). Machine learning from theory to algorithms: An overview. IOP Conference Series: Journal of Physics: Conference Series, 1142(1), 012012. doi.org/10.1088/1742-6596/1142/1/012012.
  • Amazon Personalize (2023), (https://aws.amazon.com/tr/personalize/ Erişim Tarihi: 25.11.2024).
  • Amit, D. J. (1989). Modeling Brain Function: The World of Attractor Neural Networks. Cambridge University Press.
  • Aranca (2023). AI in Defense – Advancing Border Security and Surveillance. (www.aranca.com. Erişim Tarihi: 29.08.2024).
  • Arf, C. (1959). Makine Düşünebilir mi ve Nasıl Düşünebilir? Atatürk Üniversitesi 1958- 1959 Öğretim Yılı Halk Konferansları(1), 91-103.
  • Arıkan Kargı, V.S. (2015). Yapay Sinir Ağ Modelleri ve Bir Tekstil Firmasında Uygulama, Ekin Yayınevi, Bursa.
  • Arslan, K. (2020). Eğitimde Yapay Zekâ ve Uygulamaları. Batı Anadolu Eğitim Bilimleri Dergisi, 11(1), 71-88.
  • Awad, M., & Khanna, R. (2015). Support vector regression. In Efficient learning machines (67–80). Springer. doi.org/10.1007/978-1-4302-5990-9_4.
  • Aytekin, G. (2006). İnternet İçerik Madenciliğinde Yapay Sinir Ağları ve Bir Uygulama. Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, Yayımlanmış Yüksek Lisans Tezi, Bursa. http://tez2.yok.gov.tr/ adresinden edinilmiştir.
  • Baldi, P. (2012). Autoencoders, unsupervised learning, and deep architectures. In I. Guyon, G. Dror, V. Lemaire, G. Taylor, & D. Silver (Eds.), Proceedings of the 2012 Conference on Learning Representations (ICLR). University of California, Irvine.
  • Bastan, M., Ramisa, A., & Tek, M. (2020). Cross-modal fashion product search with transformer-based Embeddings. CVPR Workshop - 3rd workshop on Computer Vision for Fashion, Art and Design, Seattle: Washington.
  • Batista, G., & Silva, D. F. (2009). How k-nearest neighbor parameters affect its performance. In Simposio Argentino de Inteligencia Artificial (ASAI 2009) (95–106).
  • Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends® in Machine Learning, 2(1), 1–127. doi: 10.1561/2200000006.
  • Bharambe, Y., Deshmukh, P., Karanjawane, P., & Chaudhari, D. (2023). Churn prediction in telecommunication industry. 2023 International Conference for Advancement in Technology (ICONAT). doi.org/10.1109/ICONAT57137.2023.10080425.
  • Bhatia, N., & Vandana. (2010). Survey of nearest neighbor techniques. International Journal of Computer Science and Information Security, 8(2), 302–305.
  • Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
  • Bohr, A., & Memarzadeh, K. (2020). The Rise of Artificial Intelligence in Healthcare Applications. doi:10.1016/B978-0-12-818438-7.00002-2.
  • Boutsidis, C., Mahoney, M. W., & Drineas, P. (2008). Unsupervised feature selection for principal components analysis. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (61–69). ACM. doi.org/10.1145/1401890.1401903.
  • Bresnick J. (2017). Artificial intelligence in healthcare market to see 40% CAGR surge. (https://healthitanalytics.com Erişim Tarihi: 25.09.2024).
  • Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., & Amodei, D. (2020). Language models are few-shot learners. doi.org/10.48550/arXiv.2005.14165
  • Brynjolfsson, E., & McAfee, A. (2017). The business of artificial intelligence. Harvard Business Review, 1–20.
  • Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y., Lundberg, S., Nori, H., Palangi, H., Ribeiro, M. T., & Zhang, Y. (2023). Sparks of Artificial General Intelligence: Early experiments with GPT-4. arXiv preprint arXiv:2303.12712. https://arxiv.org/abs/2303.12712.
  • Budd, J., Miller, B. S., Manning, E. M., & Zin, K. (2020). COVID-19 and the Role of Artificial Intelligence in Health Care. Journal of Healthcare Management, 65(4), 232-243. doi.org/10.1097/JHM-D-20-00065.
  • Carreira-Perpiñán, M. A., & Hinton, G. E. (2005). On contrastive divergence learning. In Proceedings of the 10th International Conference on Artificial Intelligence and Statistics (AISTATS) (Vol. 10).
  • Center for Security and Emerging Technology (CSET). (2024). Don’t fear AI-driven ‘biosurveillance,’ experts say. (CSET. https://cset.georgetown.edu. Erişim Tarihi: 29.08.2024.)
  • Chakir, A., Andry, J. F., Ullah, A., Bansal, R., & Ghazouani, M. (Eds.). (2024). Engineering applications of artificial intelligence. Elsevier.
  • Chandra, B., Gupta, M., & Gupta, M. P. (2007). Robust approach for estimating probabilities in Naive-Bayes classifier. In Proceedings of the 2nd International Conference on Pattern Recognition and Machine Intelligence. Springer. doi.org/10.1007/978-3-540-77046-6_2.
  • Churi, A., Chakraborty, D., Khatwani, R., & Pinto, G. (2023). Stock price prediction using deep learning and sentiment analysis. IEEE 2nd International Conference on Futuristic Technologies. doi.org/10.1109/INCOFT60753.2023.10425124.
  • Ciresan, D., Meier, U., & Schmidhuber, J. (2012). Multicolumn deep neural networks for image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (3642–3649).
  • Clancey, W. J. (1985). Heuristic Classification. Artificial Intelligence, 27(3), 289-350. doi: 10.1016/0004-3702(85)90016-5(DBLP).
  • Coulombe, P.G., Leroux, M., Stevanovic, D., & Surprenant, S., (2020). How is machine learning useful for macroeconomic forecasting? doi.org/10.48550/arXiv.2008.12477.
  • Coulston, J. W., Blinn, C. E., Thomas, V. A., & Wynne, R. H. (2016). Approximating prediction uncertainty for random forest regression models. Photogrammetric Engineering & Remote Sensing, 82(3), 189–197. doi.org/10.14358/PERS.82.3.189
  • Cover, T. M., & Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21–27. doi.org/10.1109/TIT.1967.1053964.
  • Creswell, A., & Bharath, A. A. (2018). Denoising adversarial autoencoders. IEEE Transactions on Neural Networks and Learning Systems, 99, 1–17. doi.org/10.1109/TNNLS.2018.2836147.
  • Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines. Cambridge University Press.
  • Cura, T. (2008). Modern Sezgisel Teknikler ve Uygulamaları. Papatya Yayıncılık, İstanbul.
  • Çelebi, M. E., & Aydin, K. (Eds.). (2016). Unsupervised learning algorithms. Springer. doi.org/10.1007/978-3-319-24211-8
  • Çelik, E. (2011). Görüntü İşlemeye Dayalı Avuç İçi İzinin Yapay Sinir Ağı ile Tanınması. Marmara Üniversitesi, Fen Bilimleri Enstitüsü, Yayımlanmış Yüksek Lisans Tezi. http://tez2.yok.gov.tr/ adresinden edinilmiştir.
  • Davies, H. (2012). Regulatory Responses to the Financial Crisis: An Interim Assessment. The New Palgrave Dictionary of Economics, 1–10. doi:10.1057/978-1-349-95121-5_2932-1.
  • Davis, Z.S. (2019). Artificial İntelligence on Battlefield: An Initial Survey of Potential Implications for Deterrence, Stability and Strategic Surprise, Center for Global Security Research Lawrence Livermore National Laboratory. Vol. 8, Iss. 2, (Oct 2019): 114-131.
  • Deperlioğlu, Ö. (2019). Derin sinir ağları ile Hepatit hastalığı teşhisi. In ECSAC’19 IVth European Conference on Science, Art, and Culture.
  • Doğan, K. (2018). Ceza Muhakemesinde Belirsizlik Kuşkudan Sanık Yararlanır İlkesi “in dubio pro reo”, 2. Basım, Seçkin Yayıncılık, Ankara.
  • Dreambox (2023). Inspire lifelong learning. https://www.dreambox.com/ Erişim tarihi: 05.11.2024).
  • Dumais, S., Platt, J., Heckerman, D., & Sahami, M. (1998). Inductive learning algorithms and representations for text categorization. In Proceedings of the 7th International Conference on Information and Knowledge Management (ACM-CIKM98) (148–155).
  • Elmas, Ç. (2018). Yapay Zekâ Uygulamaları. 4. Baskı. Seçkin Yayıncılık. Ankara.
  • Emerj Artificial Intelligence Research. "Predictive Analytics in the Military – Current Applications (2024), (https://emerj.com/ai-sector-overviews/predictive-analytics-in-the-military-current-applications/ Erişim Tarihi: 02.07.2024).
  • Ertmer, P. A., ve Ottenbreit-Leftwich, A. T. (2010). Teacher Technology Change: How Knowledge, Confidence, Beliefs, and Culture Intersect. Journal of Research on Technology in Education, 42(3), 255-284.
  • Farfade, S. S., Saberian, M., & Li, L.-J. (2015). Multiview face detection using deep convolutional neural networks. In Proceedings of the 5th ACM on International Conference on Multimedia Retrieval. doi.org/10.48550/arXiv.1502.02766.
  • Frontex (2020). AI Research Study. Retrieved from (www.frontex.europa.eu, Erişim Tarihi: 29.08.2024).
  • Frost & Sullivan. (2016). Healthcare Information Technology Development. Erişim Tarihi: 02.07.2024.
  • (https://store.frost.com/global-healthcare-industry-outlook-2016.html. Erişim Tarihi: 02.07.2024).
  • Fukushima, K. N. (1980). A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4), 193–202. doi.org/10.1007/BF00344251.
  • Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer, M., & Haussler, D. (2000). Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16(10), 906–914. doi.org/10.1093/bioinformatics/16.10.906.
  • Geiger, M., Nardi, D., & Aftalion, J. (2020). The Future of Artificial Intelligence and Robotics: Applications in Logistics and Beyond. AI ve Society, 35(3), 563-576.
  • Gers, F. A., & Schmidhuber, J. (2000). Recurrent nets that time and count. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN 2000): Neural Computing: New Challenges and Perspectives for the New Millennium (Vol. 3, 189–194).
  • Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction with LSTM. Neural Computation, 12(10), 2451–2471. doi.org/10.1162/089976600300015015.
  • Gil, Y. & B. Selman (2019), A 20-year community roadmap for artificial intelligence research in the US, Computing Community Consortium doi.org/10.48550/arXiv.1908.02624.
  • Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 580–587. doi.org/10.1109/CVPR.2014.81.
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. The MIT Press.
  • Google Education. (2023). AI in the Classroom: Google’s Vision. Erişim Tarihi: 02.09.2024).
  • Greenberg, N., Docherty, M., Gnanapragasam, S., & Wessely, S. (2020). Managing mental health challenges faced by healthcare workers during covid-19 pandemic. Bmj, 368.
  • Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2015). LSTM: A search space odyssey. IEEE Transactions on Neural Networks and Learning Systems. doi.org/10.1109/TNNLS.2015.2482599.
  • Gupta, J.N.D., & Smith, K.A. (2002). Neural Networks in Business: Techniques and Applications. IRM Press, United Kingdom. doi: 10.4018/978-1-93070-831-0.
  • Gupta, S., Jain, T. Sinha, A., & Tanwar, V. (2023). Review on Customer Segmentation Methods Using Machine Learning. International Conference on IoT, Intelligent Computing and Security. Conference paper. 397-411.
  • Güven, İ. (2020). Perakende Hazır Giyim Endüstrisinde Yapay Zeka Yöntemleri ile Talep Tahmini. Karabük Üniversitesi, Fen Bilimleri Enstitüsü, Endüstri Mühendisliği Anabilim Dalı, Yayımlanmış Yüksek Lisans Tezi. http://tez2.yok.gov.tr/ adresinden edinilmiştir.
  • Haleem, A., Javaid, M., & Khan, İ.H. (2019). Current status and applications of Artificial Intelligence (AI) in medical field: An overview. Current Medicine Research and Practice, 9(6), 1-16.
  • Haykin, S. (1994). Neural Networks. Macmillan College Publishing Company, USA.
  • Haykin, S. (1999). Neural Networks: A Comprehensive Fundation. (2nd ed.), Pearson Education, Inc. Pearson Prentice Hall, ISBN 81-7808-300-0, McMaster University, Hamilton, Ontario, Canada.
  • Hebb, D. O. (1949). The Organization of Behavior: A Neuropsychological Theory. Wiley.
  • Hey, T., Butler, K., Jackson, S. & Thiyagalingam, J. (2020). Machine learning and big scientific data. Philosophical Transactions of the Royal Society A, 378(2166), 20190054.
  • Higgins, M. K. (2021). Can we AlphaFold our way out of the next pandemic? Journal of molecular biology, 433(20), 167093.
  • Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507. doi.org/10.1126/science.1127647.
  • Hoadley, D. S., & Lucas, N. J. (2018). Artificial intelligence and national security (CRS Report No. R45178). Congressional Research Service, (CRS Report No. R45178).
  • Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology, 195(1), 215–243. doi: 10.1113/jphysiol.1968.sp008455.
  • IBM. (2021). Watson for Education: Future-Proofing Careers. https://www.ibm.com Erişim tarihi: 05.11.2024).
  • IBM. (2024). What is k-means clustering? https://www.ibm.com Erişim tarihi: 30.11.2024).
  • Imandoust, S. B., & Bolandraftar, M. (2013). Application of K-Nearest Neighbor (KNN) approach for predicting economic events: Theoretical background. International Journal of Engineering Research and Applications, 3(5), 605–610.
  • Jayanth Balaji, A., Harish Ram, D. S., & Nair, B. B. (2018). Applicability of deep learning models for stock Price forecasting an empirical study on BANKEX data. Procedia Computer Science, 143, 947– 953. doi.org/10.1016/j.procs.2018.10.340.
  • Jianliang, M., Haikun, S., & Ling, B. (2009). The application on intrusion detection based on K-means cluster algorithm. In Proceedings of the International Forum on Information Technology and Applications (IFITA) (1), 150–152).
  • Joachims, T. (1998). Text categorization with support vector machines: Learning with many relevant features. Proceedings of the 10th European Conference on Machine Learning (ECML), 137-142. doi.org/10.1007/BFb0026683.
  • Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202. doi.org/10.1098/rsta.2015.0202.
  • Jolly, J. (2023), It’s a long-term journey we’re on’: taking a ride towards self-driving cars, The Guardian, https://www.theguardian.com/technology/2023/feb/17/taking-ride-self-driving-car-nissan-servcityautonomous-vehicles
  • Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. doi:10.1126/science.aaa8415.
  • Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4, 237-285.7
  • Kahyaoğlu, S. B. (Ed.). (2021). The Impact of Artificial Intelligence on Governance, Economics and Finance. Volume:1, Springer. doi.org/10.1007/978-3-030-66498-8
  • Karaman, H. (2017). Yapay Zekâ Yaklaşımıyla Jeofizik Kuyu Loglarından Kömür Varlığının Belirlenmesi: Manisa, Soma Havzası. Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Yayımlanmış Yüksek Lisans Tezi. http://tez2.yok.gov.tr/ adresinden edinilmiştir.
  • Karve International. Autonomous Surveillance: A Game Changer for Military Intelligence (2024), (www.karveinternational.com, Erişim Tarihi: 02.07.2024).
  • Kazeem, O. (2023). Portolio Optimization Using Machine Learning. University of Stirling.
  • Kızılkaya, M., & Oğuzlar, A. (2018). Bazı denetimli öğrenme algoritmalarının R programlama dili ile kıyaslanması. Karadeniz Uluslararası Bilimsel Dergi, 37(37), 90–98. doi.org/10.17498/kdeniz.405746.
  • Kim, K.-j. (2003). Financial time series forecasting using support vector machines. Neurocomputing, 55(1-2), 307–319. doi.org/10.1016/S0925-2312(03)00372-2.
  • Knewton. (2023). Adaptive Learning Technology Overview. https://www.knewton.com Erişim tarihi: 05.11.2024).
  • Koedinger, K. R., Corbett, A. T., & Perfetti, C. A. (2015). The Knowledge-Learning-Instruction framework: Bridging the science-practice chasm to enhance robust student learning. Cognitive Science, 39(8), 1702-1720. doi: 10.1111/j.1551-6709.2012.01245.
  • Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43(1), 59–69.
  • Kosko, B. (1988). Feedback Stability and Unsupervised Learning. Proceedings of IEEE, International Conference on Neural Network, Vol. 1, 141-152. doi: 10.1109/ICNN.1988.23842.
  • Kotsiantis, S. (2011). Decision trees: A recent overview. Artificial Intelligence Review, 39(4), 261–267. doi.org/10.1007/s10462-011-9228-5
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems (1097–1105).
  • Kryshtafovych, A., Moult, J., Billings, W. M., Della Corte, D., Fidelis, K., Kwon, S., Olechnovič, K., Seok, C., Venclovas, Č. & Won, J. (2021). Modeling SARS‐CoV‐2 proteins in the CASP‐ commons experiment. Proteins: Structure, Function, and Bioinformatics, 89(12), 1987-1996.
  • Kühl, N., Mühlthaler, M., & Goutier, M. (2020). Supporting customeroriented marketing with artificial intelligence: Automatically quantifying customer needs from social media. Electronic Markets, 30(2), 351–367. doi.org/10.1007/s12525-019-00351-0.
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. doi.org/10.1038/nature14539.
  • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. doi: 10.1109/5.726791.
  • Liaw, A., & Wiener, M. (2002). Classification and regression by Random Forest. R News, 2(3), 18–22.
  • Lopez Pinaya, W. H., Vieira, S., Garcia-Dias, R., & Mechelli, A. (2020). Autoencoders. In Machine learning: Methods and applications to brain disorders (pp. 193–208). Elsevier. doi.org/10.1016/B978-0-12-815739-8.00011-0.
  • Mammadova, M. (2020). Pi-Sigma Yapay Sinir Ağları ile Turist Sayısı Tahmini. Giresun Üniversitesi, Fen Bilimleri Enstitüsü, Yayımlanmış Yüksek Lisans Tezi. http://tez2.yok.gov.tr/ adresinden edinilmiştir.
  • Martin, M. (2002). On-line support vector machine regression. In Proceedings of the European Conference on Machine Learning (ECML 2002) (282–294). Lecture Notes in Computer Science, vol. 2430. Springer. doi.org/10.1007/3-540-36755-1_23.
  • Martinengo, L., E. Lum & J. Car (2022), Evaluation of chatbot-delivered interventions for selfmanagement of depression: Content analysis, Journal of Affective Disorders, Vol. 319, 598-607, doi.org/10.1016/j.jad.2022.09.028.
  • Mashrur, A., Luo, W., Zaidi, N. A., & Robles-Kelly, A. (2020). Machine Learning for Financial Risk Management: A Survey. IEEE Access, 9, 20184-20205. doi.org/10.1109/ACCESS.2021.3053094.
  • McCarthy (1956). A Proposal For The Dartmouth Summer Research Project On Artificial İntelligence. Erişim: https://raysolomonoff.com/dartmouth/boxa/dart564props.pdf.
  • McCarthy, S., & Alaghband, G. (2023). Enhancing Financial Market Analysis and Prediction with Emotion Corpora and News Co-Occurrence Network. Journal of Risk and Financial Management, 16(4), 226. doi.org/10.3390/jrfm16040226.
  • McCulloch, W., & Pitts, W. (1943). A Logical Calculus of Ideas Immanent in Nervous Activity. Bulletin of Mothemnticnl Biology Vol: 52, No. l/2., 99-115.
  • Microsoft. (2023). HoloLens and Education. https://www.microsoft.com. Erişim Tarihi: 08.11.2024). Minohara, T. (2006). Fault Tolerant Training of Neural Networks for Learning Vector Quantization. ICONIP: Neural Information Processing. 786-795.
  • Minsky, M., & Papert, S. (1969). Perceptrons: An introduction to computational geometry. MIT Press.
  • Nabiyev, V. V. (2016). Yapay zekâ: Teori ve uygulamaları. Seçkin Yayıncılık.
  • Nabiyev, V.V., & Erümit, A.K. (2020). Eğitimde Yapay Zekâ: Kuramdan Uygulamaya. Pegem Yayınları, 1. Baskı, Ankara.
  • Nasr, M., Islam, M. M., Shehata, S., Karray, F., & Quintana, Y. (2021). Smart healthcare in the age of AI: Recent advances, challenges, and future prospects. IEEE Access, 9, 145248-145270. doi.org/10.48550/arXiv.2107.03924.
  • Nasteski, V. (2017). An overview of the supervised machine learning methods. Horizons, 4(1), Article P05. doi.org/10.20544/HORIZONS.B.04.1.17.P05
  • Newell, A., & Simon, H. A. (1976). Computer Science as Empirical Inquiry: Symbols and Search. Communications of the ACM, 19(3), 113-126.
  • Niessen, L. W., Grijseels, E. W. and Rutten, F. F. H. (2000). The Evidence Based Approach in Health Policy and Health Care Delivery. Social Science and Medicine, 51(6): 859-869.
  • Nilsson, N. J. (2010). The Quest for Artificial Intelligence: A History of Ideas and Achievements. Cambridge University Press.
  • OECD (2021). AI and the Future of Skills, Volume 1: Capabilities and Assessments, Educational Research and Innovation, OECD Publishing, doi.org/10.1787/5ee71f34-en.
  • OECD (2023). Putting AI to the test: How does the performance of GPT and 15-year-old students in PISA compare?, Volume 6: OECD Education Spotlights, No. 6, OECD Publishing, doi.org/10.1787/2c297e0b-en.
  • Oja, E. (1982). Simplified neuron model as a principal component analyzer. Journal of Mathematical Biology, 15(3), 267–273. doi.org/10.1007/BF00275687.
  • Okutan, O. (2006). Yapay Zekâ ile Mobil Robot Kontrolü. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yayımlanmış Yüksek Lisans Tezi. http://tez2.yok.gov.tr/ adresinden edinilmiştir.
  • OpenAI (2023), GPT-4 Technical Report, https://cdn.openai.com/papers/gpt-4.pdf.
  • Osborne, C. (2020), Dutch court rules AI benefits fraud detection system violates EU human rights,( https://www.zdnet.com/article/dutch-court-rules-ai-benefits-fraud-detection-system-violates-eu-human-rights/ Erişim Tarihi: 02.07.2024).
  • Osuna, E., Freund, R., & Girosi, F. (1997). Training support vector machines: An application to face detection. In Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR97) (30–136).
  • Özbilgin, (2023). Uluslararası Hukukun Yaptırım Problemine Özel Hukuk Perspektifinde Alternatif Çözüm: Yapay Zekâ. Yeditepe Üniversitesi, SBE, Yayımlanmış Yüksek Lisans Tezi.
  • Öztemel, E. (2012). Yapay Sinir Ağları, 3. Baskı, Papatya Yayıncılık, İstanbul.
  • Parker, D. (1987). Optimal Algorithms for Adaptive Networks: Second order Back Propagation, Second Order Direct Propagation, and Second Order Hebbian Learning. Proceedings of the IEEE First International Conference on Neural Networks (San Diego, CA) , II, 593--600.
  • Pau, L.F., & Yong, T.P. (1994), Artificial intelligence in economics and finance: A state of the art — 1994: The real estate price and assets and liability analysis case, Handbook of Computational Economics, 1, 405-439.
  • Pavli, A., Theodoridou, M., & Maltezou, H. C. (2021). Post-COVID syndrome: Incidence, clinical spectrum, and challenges for primary healthcare professionals. Archives of Medical Research.
  • Piramuthu, S., Shaw, M.J. & Gentry, J.A., (1994). A Classification Approach Using Multi-Layered Neural Networks. Decision Support Systems, 11(5), 509- 525.
  • Qiu, X. Y., Kang, K., & Zhang, H. X. (2008). Selection of kernel parameters for K-NN. In IEEE International Joint Conference on Neural Networks (IJCNN) (61–65). Ramaswamy, S., & DeClerck, N. (2018). Customer perception analysis using deep learning and NLP. Procedia Computer Science, 140, 170–178. doi.org/10.1016/j.procs.2018.10.326.
  • Raska, M. (2021). The sixth RMA wave: Disruption in military affairs? Journal of strategic studies, 44(4), 456-479.
  • Ravid, S.Y. (2017). Generating Rembrandt: Artificial Intelligence, Copyright, and Accountability in the 3A Era--The Human-like Authors are Already Here- A New Model, Mich. St. L. Rev. 659, 664-666.
  • Reiling, A. D. (2020). Courts and Artificial Intelligence. International Journal for Court Administration, 11(2), 2-10. doi.org/10.36745/ijca.343.
  • Rickli, J.M. (2019). Artificial Intelligence and the Future of Warfare Chapter, Global Risk Report, World Economic Forum. (https://www.researchgate.net/publication/337103254_Artificial_Intelligence_and_the_Future_of_Warfare Erişim Tarihi: 30.09.2024)
  • Roblyer, M. D., & Doering, A. H. (2010). Integrating Educational Technology into Teaching (5th ed.). Boston: Allyn ve Bacon.
  • Rokach, L., & Maimon, O. Z. (2008). Data mining with decision trees: Theory and applications. World Scientific. Roose, K. (2022), A.I.-Generated Art Is Already Transforming Creative Work, The New York Times, https://www.nytimes.com/2022/10/21/technology/ai-generated-art-jobs-dall-e-2.html.4.
  • Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408. doi.org/10.1037/h0042519.
  • Rossintelligence (t.y.), (https://www.rossintelligence.com/about-us, Erişim Tarihi: 08.04.2024).
  • Ruffle, J. K., Kane, J. A., Hopfner, F., & Shura, R. D. (2019). Predictive models in personalized medicine: Applications, challenges, and ethical considerations. Journal of Translational Medicine, 17(1), 42.
  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536. doi.org/10.1038/323533a0.
  • Russell, S., & Norvig, P. (2020). Artificial intelligence: A modern approach, 4. Baskı. Pearson.
  • Sağıroğlu, Ş., Beşdok, E., & Erler, M. (2003). Mühendislikte Yapay Zeka Uygulamaları- I: Yapay Sinir Ağları, Ufuk Yayıncılık, Kayseri.
  • Şahin, A. (2020). İleri Zamanlı Kan Glikoz Değeri Tahmini. Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Yayımlanmış Yüksek Lisans Tezi. http://tez2.yok.gov.tr/ adresinden edinilmiştir.
  • Salakhutdinov, R., & Hinton, G. (2009). Deep Boltzmann Machines. In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) (3–11).
  • Samuel A.L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of research and development. 3(3):210-29.
  • Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks. 61: 85–117. doi:10.1016/j.neunet.2014.09.003.
  • Shaheen, M.Y. (2021). Applications of Artificial Intelligence (AI) in healthcare: A review. ScienceOpen Preprints. doi: 10.14293/S2199-1006.1.SOR-.PPVRY8K.v1.
  • Shannon, C.E. (1948). A Mathematical Theory of Communication. The Bell System Technical Journal, Vol:27, 379-423. doi.org/10.1002/j.1538-7305.1948.tb01338.x.
  • Simpson, P.K. (1989). Artificial neural networks. Pergamon Press, New York.
  • Sleeman, D., & Brown, J. S. (1982). Intelligent tutoring systems. Academic Press.
  • Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory. In D. E. Rumelhart, J. L. McClelland, & PDP Research Group (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition. Volume 1: Foundations (194–281). Cambridge, MA: MIT Press.
  • Song, H. A., & Lee, S.-Y. (2013). Hierarchical representation using NMF. In International Conference on Neural Information Processing (466–473). doi: 10.1007/978-3-642-42054-2_58.
  • Srivastava, R. K., Greff, K., & Schmidhuber, J. (2015). Training very deep networks. In Proceedings of the 28th International Conference on Neural Information Processing Systems (NIPS’15), Vol. 2 (2377–2385).
  • Su, F., Yuan, P., Wang, Y., & Zhangcorresponding, C. (2016). The superior fault tolerance of artificial neural network training with a fault/noise injection-based genetic algorithm. Protein Cell. 2016 Oct; 7(10), 735–748. doi:10.1007/s13238-016-0302-5.
  • Sümer, S. Y. (2021). Ceza Yargılamasının Geleceği: Robot Hâkim. Dokuz Eylül Üniversitesi Hukuk Fakültesi Dergisi, (23), 1543-1591. doi.org/10.33717/deuhfd.998255.
  • Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction (2nd ed.). MIT Press.
  • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2014). Going deeper with convolutions. arXiv preprint arXiv:1409.4842.
  • Taher, K. A., Jisan, B. M. Y., & Rahman, M. M. (2019). Network intrusion detection using supervised machine learning technique with feature selection. International Conference on Robotics, DOI: 10.1109/ICREST.2019.8644161.
  • Tan, P.-N., Steinbach, M., Karpatne, A., & Kumar, V. (2013). Introduction to data mining (2nd ed.). Addison-Wesley.
  • Taylor, G. W., Hinton, G. E., & Roweis, S. T. (2006). Modeling human motion using binary latent variables. In Advances in Neural Information Processing Systems 19. MIT Press. (1345–1352).
  • Tebelkıs, J. (1995). Speech Recognition using Neural Networks, Thesis (PhD), School of Computer Science Carnegie Mellon University, Pennsylvania.
  • Themarkup (t.y.), (https://www.ebrevia.com/#homepage, Erişim Tarihi: 12.03.2024).
  • Thintech STM (2019). İleri Sağlık Teknolojileri I: Akıllı Sağlık Uygulamaları ve Veri Analizi İle Sağlık Sorunlarını Tanımlamak, (https://thinktech.stm.com.tr/tr/ileri-saglik-teknolojileri-i-akilli-saglik-uygulamalari-ve-veri-analizi-ile-saglik-sorunlarini-tanimlamak Erişim Tarihi: 29.09.2024).
  • Tjandra, S., Alexandra, A., & Warsito, P. (2015). Determining citizen complaints to the appropriate government departments using KNN algorithm. Proceedings of the International Conference on Information Technology and Electrical Engineering (ICITEE), 2–5.
  • Total Military Insight. (2023). Enhancing Security: The Role of AI for Threat Detection. (www.totalmilitaryinsight.com, Erişim Tarihi: 29.08.2024).
  • Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59 (236), 433-460. doi.org/10.1093/mind/LIX.236.433.
  • Türkel, S. ve Yeşilkuş, F. (2020). Dijital Dönüşüm Paradigması: Endüstri 4.0. Avrasya Sosyal ve Ekonomi Araştırmaları Dergisi (ASEAD) Eurasian Journal of Researches in Social and Economics (EJRSE), 7(5), 332-346.
  • Unsupervised Learning: Algorithms and Examples, (2021), (https://www.altexsoft.com/blog/unsupervised-machine-learning/ Erişim Tarihi: 25.11.2024).
  • Usama, M., Qadir, J., Raza, A., Arif, H., Yau, K.-L. A., Elkhatib, Y., Hussain, A., & Al-Fuqaha, A. (2019). Unsupervised machine learning for networking: Techniques, applications, and research challenges. IEEE Access, 7, 65579–65615. doi.org/10.1109/ACCESS.2019.2916648.
  • Vapnik, V. (1995). The nature of statistical learning theory. Springer-Verlag.
  • Wang, W., Zhao, M., & Wang, J. (2018). Effective android malware detection with a hybrid model based on deep autoencoder and convolutional neural network. Journal of Ambient Intelligence and Humanized Computing. doi.org/10.1007/s12652-018-0803-6.
  • Wang, Y., & Yan, G. (2021). Survey on the application of deep learning in algorithmic trading. Data Science and Financial Economics, 1(2), 345-361. doi.org/10.3934/DSFE.2021019.
  • Webb, G. I. (2017). Naïve Bayes. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of Machine Learning and Data Mining. Springer.
  • Weston, J., Ratle, F., Mobahi, H., & Collobert, R. (2012). Deep learning via semi-supervised embedding. In Neural networks: Tricks of the trade (639–655). Springer.
  • Woolf, B. P. (2009). Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-learning. Morgan Kaufmann.
  • Yeh, R. A., Chen, C., Lim, T.-Y., Schwing, A. G., Hasegawa-Johnson, M., & Do, M. N. (2017). Semantic image inpainting with deep generative models. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2), 4). doi.org/10.1109/CVPR.2017.4.
  • Yingqiu, L., Wei, L., & Yunchun, L. (2007). Network traffic classification using K-means clustering. In Proceedings of the 2nd International Multi-Symposium on Computer and Computational Sciences (IMSCCS) (pp. 360–365).
  • Young, L. (2023), Companies Are Slow to Adopt Robot-Operated ‘Dark’ Warehouses, Wall Street Journal, https://www.wsj.com/articles/companies-are-slow-to-adopt-robot-operated-dark-warehouses46e1c887.
  • Yurtoğlu, H. (2005). Yapay sinir ağları metodolojisi ile öngörü modellemesi: bazı makroekonomik değişkenler için Türkiye örneği. DPT Uzmanlık Tezi, Ankara.
  • Zawacki-Richter, O., Marinsky, A., & Wiatrowski, M. (2019). Systematic review of research on artificial intelligence in higher education: Trends, challenges, and future directions. International Journal of Educational Technology in Higher Education, 16(1), 1-20.
  • Zell, A. (1994). Simulation of Neural Networks. 1st ed. Addison-Wesley. ISBN 3-89319-554-8.
  • Zeng, K., Yu, J., Wang, R., Li, C., & Tao, D. (2017). Coupled deep autoencoder for single image super-resolution. IEEE Transactions on Cybernetics, 47(1), 27–37. doi.org/10.1109/TCYB.2016.2523960.

Yapay Zekâ: Alt Dalları ve Uygulama Alanları

Yıl 2024, Cilt: 16 Sayı: 4, 201 - 234, 30.12.2024
https://doi.org/10.52791/aksarayiibd.1574207

Öz

Yapay zekâ, makinelerin insan benzeri düşünme, öğrenme ve problem çözme yetenekleri kazanmasını sağlayan bir teknoloji alanıdır. Makine öğrenimi ve derin öğrenme ve bu verilerden öğrenerek kararlar alabilen bir alan olarak karşımıza çıkan yapay zekâ son yıllarda, çeşitli uygulamalarla, sağlıktan güvenliğe, eğitimden hukuka, ekonomi ve finans alanından her alana dokunan geniş bir yelpazeye yayılmıştır. Günümüzde yapay zekanın dokunmadığı alan neredeyse kalmamıştır. Bu teknoloji, endüstriyel süreçlerden günlük yaşamın basit rutinlerine kadar pek çok alanda devrim yaratmakta ve insanların iş yapma biçimlerini köklü bir şekilde değiştirmektedir. Hem bireysel hem de toplumsal düzeyde sunduğu yeniliklerle, yaşam kalitesini artırmanın yanı sıra verimliliği de önemli ölçüde yükseltmektedir. Bu makalenin amacı yapay zekâyı teorik bir çerçevede inceleyerek alt dalları, tarihçesi ve çeşitli uygulama alanları üzerinde durmaktır.

Kaynakça

  • Abbas, N., Cohen, C., Grolleman, D.J., & Mosk, B. (2024). Artificial Intelligence Can Make Markets More Efficient and More Volatile (www.imf.org Erişim Tarihi: 29.09.2024).
  • Adrian, T. (2024). Artificial Intelligence and its Impact on Financial Markets and Financial Stability. (www.imf.org Erişim Tarihi: 29.09.2024).
  • Aha, D. W., Kibler, D., & Goldstone, R. L. (1991). Instance-based learning algorithms. Machine Learning, 6(1), 37–66. doi.org/10.1007/BF00153759.
  • AI-Powered Legal Assistance at Your Fingertips, (https://legalmasterai.com. Erişim Tarihi: 08.04.2024).
  • Alkayış, S. (2021). Eğitim Felsefesi Persfektifinden Dijitalleşme ve Eğitim 4.0, Bingöl Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 11(21), 221-237.
  • Allahverdi, N., (2002). Uzman Sistemler Bir Yapay Zekâ Uygulaması. Atlas Yayın-Dağıtım, İstanbul.
  • Alzubi, J., Nayyar, A., & Kumar, A. (2018). Machine learning from theory to algorithms: An overview. IOP Conference Series: Journal of Physics: Conference Series, 1142(1), 012012. doi.org/10.1088/1742-6596/1142/1/012012.
  • Amazon Personalize (2023), (https://aws.amazon.com/tr/personalize/ Erişim Tarihi: 25.11.2024).
  • Amit, D. J. (1989). Modeling Brain Function: The World of Attractor Neural Networks. Cambridge University Press.
  • Aranca (2023). AI in Defense – Advancing Border Security and Surveillance. (www.aranca.com. Erişim Tarihi: 29.08.2024).
  • Arf, C. (1959). Makine Düşünebilir mi ve Nasıl Düşünebilir? Atatürk Üniversitesi 1958- 1959 Öğretim Yılı Halk Konferansları(1), 91-103.
  • Arıkan Kargı, V.S. (2015). Yapay Sinir Ağ Modelleri ve Bir Tekstil Firmasında Uygulama, Ekin Yayınevi, Bursa.
  • Arslan, K. (2020). Eğitimde Yapay Zekâ ve Uygulamaları. Batı Anadolu Eğitim Bilimleri Dergisi, 11(1), 71-88.
  • Awad, M., & Khanna, R. (2015). Support vector regression. In Efficient learning machines (67–80). Springer. doi.org/10.1007/978-1-4302-5990-9_4.
  • Aytekin, G. (2006). İnternet İçerik Madenciliğinde Yapay Sinir Ağları ve Bir Uygulama. Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, Yayımlanmış Yüksek Lisans Tezi, Bursa. http://tez2.yok.gov.tr/ adresinden edinilmiştir.
  • Baldi, P. (2012). Autoencoders, unsupervised learning, and deep architectures. In I. Guyon, G. Dror, V. Lemaire, G. Taylor, & D. Silver (Eds.), Proceedings of the 2012 Conference on Learning Representations (ICLR). University of California, Irvine.
  • Bastan, M., Ramisa, A., & Tek, M. (2020). Cross-modal fashion product search with transformer-based Embeddings. CVPR Workshop - 3rd workshop on Computer Vision for Fashion, Art and Design, Seattle: Washington.
  • Batista, G., & Silva, D. F. (2009). How k-nearest neighbor parameters affect its performance. In Simposio Argentino de Inteligencia Artificial (ASAI 2009) (95–106).
  • Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends® in Machine Learning, 2(1), 1–127. doi: 10.1561/2200000006.
  • Bharambe, Y., Deshmukh, P., Karanjawane, P., & Chaudhari, D. (2023). Churn prediction in telecommunication industry. 2023 International Conference for Advancement in Technology (ICONAT). doi.org/10.1109/ICONAT57137.2023.10080425.
  • Bhatia, N., & Vandana. (2010). Survey of nearest neighbor techniques. International Journal of Computer Science and Information Security, 8(2), 302–305.
  • Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
  • Bohr, A., & Memarzadeh, K. (2020). The Rise of Artificial Intelligence in Healthcare Applications. doi:10.1016/B978-0-12-818438-7.00002-2.
  • Boutsidis, C., Mahoney, M. W., & Drineas, P. (2008). Unsupervised feature selection for principal components analysis. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (61–69). ACM. doi.org/10.1145/1401890.1401903.
  • Bresnick J. (2017). Artificial intelligence in healthcare market to see 40% CAGR surge. (https://healthitanalytics.com Erişim Tarihi: 25.09.2024).
  • Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., & Amodei, D. (2020). Language models are few-shot learners. doi.org/10.48550/arXiv.2005.14165
  • Brynjolfsson, E., & McAfee, A. (2017). The business of artificial intelligence. Harvard Business Review, 1–20.
  • Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y., Lundberg, S., Nori, H., Palangi, H., Ribeiro, M. T., & Zhang, Y. (2023). Sparks of Artificial General Intelligence: Early experiments with GPT-4. arXiv preprint arXiv:2303.12712. https://arxiv.org/abs/2303.12712.
  • Budd, J., Miller, B. S., Manning, E. M., & Zin, K. (2020). COVID-19 and the Role of Artificial Intelligence in Health Care. Journal of Healthcare Management, 65(4), 232-243. doi.org/10.1097/JHM-D-20-00065.
  • Carreira-Perpiñán, M. A., & Hinton, G. E. (2005). On contrastive divergence learning. In Proceedings of the 10th International Conference on Artificial Intelligence and Statistics (AISTATS) (Vol. 10).
  • Center for Security and Emerging Technology (CSET). (2024). Don’t fear AI-driven ‘biosurveillance,’ experts say. (CSET. https://cset.georgetown.edu. Erişim Tarihi: 29.08.2024.)
  • Chakir, A., Andry, J. F., Ullah, A., Bansal, R., & Ghazouani, M. (Eds.). (2024). Engineering applications of artificial intelligence. Elsevier.
  • Chandra, B., Gupta, M., & Gupta, M. P. (2007). Robust approach for estimating probabilities in Naive-Bayes classifier. In Proceedings of the 2nd International Conference on Pattern Recognition and Machine Intelligence. Springer. doi.org/10.1007/978-3-540-77046-6_2.
  • Churi, A., Chakraborty, D., Khatwani, R., & Pinto, G. (2023). Stock price prediction using deep learning and sentiment analysis. IEEE 2nd International Conference on Futuristic Technologies. doi.org/10.1109/INCOFT60753.2023.10425124.
  • Ciresan, D., Meier, U., & Schmidhuber, J. (2012). Multicolumn deep neural networks for image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (3642–3649).
  • Clancey, W. J. (1985). Heuristic Classification. Artificial Intelligence, 27(3), 289-350. doi: 10.1016/0004-3702(85)90016-5(DBLP).
  • Coulombe, P.G., Leroux, M., Stevanovic, D., & Surprenant, S., (2020). How is machine learning useful for macroeconomic forecasting? doi.org/10.48550/arXiv.2008.12477.
  • Coulston, J. W., Blinn, C. E., Thomas, V. A., & Wynne, R. H. (2016). Approximating prediction uncertainty for random forest regression models. Photogrammetric Engineering & Remote Sensing, 82(3), 189–197. doi.org/10.14358/PERS.82.3.189
  • Cover, T. M., & Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21–27. doi.org/10.1109/TIT.1967.1053964.
  • Creswell, A., & Bharath, A. A. (2018). Denoising adversarial autoencoders. IEEE Transactions on Neural Networks and Learning Systems, 99, 1–17. doi.org/10.1109/TNNLS.2018.2836147.
  • Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines. Cambridge University Press.
  • Cura, T. (2008). Modern Sezgisel Teknikler ve Uygulamaları. Papatya Yayıncılık, İstanbul.
  • Çelebi, M. E., & Aydin, K. (Eds.). (2016). Unsupervised learning algorithms. Springer. doi.org/10.1007/978-3-319-24211-8
  • Çelik, E. (2011). Görüntü İşlemeye Dayalı Avuç İçi İzinin Yapay Sinir Ağı ile Tanınması. Marmara Üniversitesi, Fen Bilimleri Enstitüsü, Yayımlanmış Yüksek Lisans Tezi. http://tez2.yok.gov.tr/ adresinden edinilmiştir.
  • Davies, H. (2012). Regulatory Responses to the Financial Crisis: An Interim Assessment. The New Palgrave Dictionary of Economics, 1–10. doi:10.1057/978-1-349-95121-5_2932-1.
  • Davis, Z.S. (2019). Artificial İntelligence on Battlefield: An Initial Survey of Potential Implications for Deterrence, Stability and Strategic Surprise, Center for Global Security Research Lawrence Livermore National Laboratory. Vol. 8, Iss. 2, (Oct 2019): 114-131.
  • Deperlioğlu, Ö. (2019). Derin sinir ağları ile Hepatit hastalığı teşhisi. In ECSAC’19 IVth European Conference on Science, Art, and Culture.
  • Doğan, K. (2018). Ceza Muhakemesinde Belirsizlik Kuşkudan Sanık Yararlanır İlkesi “in dubio pro reo”, 2. Basım, Seçkin Yayıncılık, Ankara.
  • Dreambox (2023). Inspire lifelong learning. https://www.dreambox.com/ Erişim tarihi: 05.11.2024).
  • Dumais, S., Platt, J., Heckerman, D., & Sahami, M. (1998). Inductive learning algorithms and representations for text categorization. In Proceedings of the 7th International Conference on Information and Knowledge Management (ACM-CIKM98) (148–155).
  • Elmas, Ç. (2018). Yapay Zekâ Uygulamaları. 4. Baskı. Seçkin Yayıncılık. Ankara.
  • Emerj Artificial Intelligence Research. "Predictive Analytics in the Military – Current Applications (2024), (https://emerj.com/ai-sector-overviews/predictive-analytics-in-the-military-current-applications/ Erişim Tarihi: 02.07.2024).
  • Ertmer, P. A., ve Ottenbreit-Leftwich, A. T. (2010). Teacher Technology Change: How Knowledge, Confidence, Beliefs, and Culture Intersect. Journal of Research on Technology in Education, 42(3), 255-284.
  • Farfade, S. S., Saberian, M., & Li, L.-J. (2015). Multiview face detection using deep convolutional neural networks. In Proceedings of the 5th ACM on International Conference on Multimedia Retrieval. doi.org/10.48550/arXiv.1502.02766.
  • Frontex (2020). AI Research Study. Retrieved from (www.frontex.europa.eu, Erişim Tarihi: 29.08.2024).
  • Frost & Sullivan. (2016). Healthcare Information Technology Development. Erişim Tarihi: 02.07.2024.
  • (https://store.frost.com/global-healthcare-industry-outlook-2016.html. Erişim Tarihi: 02.07.2024).
  • Fukushima, K. N. (1980). A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4), 193–202. doi.org/10.1007/BF00344251.
  • Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer, M., & Haussler, D. (2000). Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16(10), 906–914. doi.org/10.1093/bioinformatics/16.10.906.
  • Geiger, M., Nardi, D., & Aftalion, J. (2020). The Future of Artificial Intelligence and Robotics: Applications in Logistics and Beyond. AI ve Society, 35(3), 563-576.
  • Gers, F. A., & Schmidhuber, J. (2000). Recurrent nets that time and count. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN 2000): Neural Computing: New Challenges and Perspectives for the New Millennium (Vol. 3, 189–194).
  • Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction with LSTM. Neural Computation, 12(10), 2451–2471. doi.org/10.1162/089976600300015015.
  • Gil, Y. & B. Selman (2019), A 20-year community roadmap for artificial intelligence research in the US, Computing Community Consortium doi.org/10.48550/arXiv.1908.02624.
  • Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 580–587. doi.org/10.1109/CVPR.2014.81.
  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. The MIT Press.
  • Google Education. (2023). AI in the Classroom: Google’s Vision. Erişim Tarihi: 02.09.2024).
  • Greenberg, N., Docherty, M., Gnanapragasam, S., & Wessely, S. (2020). Managing mental health challenges faced by healthcare workers during covid-19 pandemic. Bmj, 368.
  • Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2015). LSTM: A search space odyssey. IEEE Transactions on Neural Networks and Learning Systems. doi.org/10.1109/TNNLS.2015.2482599.
  • Gupta, J.N.D., & Smith, K.A. (2002). Neural Networks in Business: Techniques and Applications. IRM Press, United Kingdom. doi: 10.4018/978-1-93070-831-0.
  • Gupta, S., Jain, T. Sinha, A., & Tanwar, V. (2023). Review on Customer Segmentation Methods Using Machine Learning. International Conference on IoT, Intelligent Computing and Security. Conference paper. 397-411.
  • Güven, İ. (2020). Perakende Hazır Giyim Endüstrisinde Yapay Zeka Yöntemleri ile Talep Tahmini. Karabük Üniversitesi, Fen Bilimleri Enstitüsü, Endüstri Mühendisliği Anabilim Dalı, Yayımlanmış Yüksek Lisans Tezi. http://tez2.yok.gov.tr/ adresinden edinilmiştir.
  • Haleem, A., Javaid, M., & Khan, İ.H. (2019). Current status and applications of Artificial Intelligence (AI) in medical field: An overview. Current Medicine Research and Practice, 9(6), 1-16.
  • Haykin, S. (1994). Neural Networks. Macmillan College Publishing Company, USA.
  • Haykin, S. (1999). Neural Networks: A Comprehensive Fundation. (2nd ed.), Pearson Education, Inc. Pearson Prentice Hall, ISBN 81-7808-300-0, McMaster University, Hamilton, Ontario, Canada.
  • Hebb, D. O. (1949). The Organization of Behavior: A Neuropsychological Theory. Wiley.
  • Hey, T., Butler, K., Jackson, S. & Thiyagalingam, J. (2020). Machine learning and big scientific data. Philosophical Transactions of the Royal Society A, 378(2166), 20190054.
  • Higgins, M. K. (2021). Can we AlphaFold our way out of the next pandemic? Journal of molecular biology, 433(20), 167093.
  • Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507. doi.org/10.1126/science.1127647.
  • Hoadley, D. S., & Lucas, N. J. (2018). Artificial intelligence and national security (CRS Report No. R45178). Congressional Research Service, (CRS Report No. R45178).
  • Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology, 195(1), 215–243. doi: 10.1113/jphysiol.1968.sp008455.
  • IBM. (2021). Watson for Education: Future-Proofing Careers. https://www.ibm.com Erişim tarihi: 05.11.2024).
  • IBM. (2024). What is k-means clustering? https://www.ibm.com Erişim tarihi: 30.11.2024).
  • Imandoust, S. B., & Bolandraftar, M. (2013). Application of K-Nearest Neighbor (KNN) approach for predicting economic events: Theoretical background. International Journal of Engineering Research and Applications, 3(5), 605–610.
  • Jayanth Balaji, A., Harish Ram, D. S., & Nair, B. B. (2018). Applicability of deep learning models for stock Price forecasting an empirical study on BANKEX data. Procedia Computer Science, 143, 947– 953. doi.org/10.1016/j.procs.2018.10.340.
  • Jianliang, M., Haikun, S., & Ling, B. (2009). The application on intrusion detection based on K-means cluster algorithm. In Proceedings of the International Forum on Information Technology and Applications (IFITA) (1), 150–152).
  • Joachims, T. (1998). Text categorization with support vector machines: Learning with many relevant features. Proceedings of the 10th European Conference on Machine Learning (ECML), 137-142. doi.org/10.1007/BFb0026683.
  • Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202. doi.org/10.1098/rsta.2015.0202.
  • Jolly, J. (2023), It’s a long-term journey we’re on’: taking a ride towards self-driving cars, The Guardian, https://www.theguardian.com/technology/2023/feb/17/taking-ride-self-driving-car-nissan-servcityautonomous-vehicles
  • Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. doi:10.1126/science.aaa8415.
  • Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4, 237-285.7
  • Kahyaoğlu, S. B. (Ed.). (2021). The Impact of Artificial Intelligence on Governance, Economics and Finance. Volume:1, Springer. doi.org/10.1007/978-3-030-66498-8
  • Karaman, H. (2017). Yapay Zekâ Yaklaşımıyla Jeofizik Kuyu Loglarından Kömür Varlığının Belirlenmesi: Manisa, Soma Havzası. Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Yayımlanmış Yüksek Lisans Tezi. http://tez2.yok.gov.tr/ adresinden edinilmiştir.
  • Karve International. Autonomous Surveillance: A Game Changer for Military Intelligence (2024), (www.karveinternational.com, Erişim Tarihi: 02.07.2024).
  • Kazeem, O. (2023). Portolio Optimization Using Machine Learning. University of Stirling.
  • Kızılkaya, M., & Oğuzlar, A. (2018). Bazı denetimli öğrenme algoritmalarının R programlama dili ile kıyaslanması. Karadeniz Uluslararası Bilimsel Dergi, 37(37), 90–98. doi.org/10.17498/kdeniz.405746.
  • Kim, K.-j. (2003). Financial time series forecasting using support vector machines. Neurocomputing, 55(1-2), 307–319. doi.org/10.1016/S0925-2312(03)00372-2.
  • Knewton. (2023). Adaptive Learning Technology Overview. https://www.knewton.com Erişim tarihi: 05.11.2024).
  • Koedinger, K. R., Corbett, A. T., & Perfetti, C. A. (2015). The Knowledge-Learning-Instruction framework: Bridging the science-practice chasm to enhance robust student learning. Cognitive Science, 39(8), 1702-1720. doi: 10.1111/j.1551-6709.2012.01245.
  • Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43(1), 59–69.
  • Kosko, B. (1988). Feedback Stability and Unsupervised Learning. Proceedings of IEEE, International Conference on Neural Network, Vol. 1, 141-152. doi: 10.1109/ICNN.1988.23842.
  • Kotsiantis, S. (2011). Decision trees: A recent overview. Artificial Intelligence Review, 39(4), 261–267. doi.org/10.1007/s10462-011-9228-5
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems (1097–1105).
  • Kryshtafovych, A., Moult, J., Billings, W. M., Della Corte, D., Fidelis, K., Kwon, S., Olechnovič, K., Seok, C., Venclovas, Č. & Won, J. (2021). Modeling SARS‐CoV‐2 proteins in the CASP‐ commons experiment. Proteins: Structure, Function, and Bioinformatics, 89(12), 1987-1996.
  • Kühl, N., Mühlthaler, M., & Goutier, M. (2020). Supporting customeroriented marketing with artificial intelligence: Automatically quantifying customer needs from social media. Electronic Markets, 30(2), 351–367. doi.org/10.1007/s12525-019-00351-0.
  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. doi.org/10.1038/nature14539.
  • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. doi: 10.1109/5.726791.
  • Liaw, A., & Wiener, M. (2002). Classification and regression by Random Forest. R News, 2(3), 18–22.
  • Lopez Pinaya, W. H., Vieira, S., Garcia-Dias, R., & Mechelli, A. (2020). Autoencoders. In Machine learning: Methods and applications to brain disorders (pp. 193–208). Elsevier. doi.org/10.1016/B978-0-12-815739-8.00011-0.
  • Mammadova, M. (2020). Pi-Sigma Yapay Sinir Ağları ile Turist Sayısı Tahmini. Giresun Üniversitesi, Fen Bilimleri Enstitüsü, Yayımlanmış Yüksek Lisans Tezi. http://tez2.yok.gov.tr/ adresinden edinilmiştir.
  • Martin, M. (2002). On-line support vector machine regression. In Proceedings of the European Conference on Machine Learning (ECML 2002) (282–294). Lecture Notes in Computer Science, vol. 2430. Springer. doi.org/10.1007/3-540-36755-1_23.
  • Martinengo, L., E. Lum & J. Car (2022), Evaluation of chatbot-delivered interventions for selfmanagement of depression: Content analysis, Journal of Affective Disorders, Vol. 319, 598-607, doi.org/10.1016/j.jad.2022.09.028.
  • Mashrur, A., Luo, W., Zaidi, N. A., & Robles-Kelly, A. (2020). Machine Learning for Financial Risk Management: A Survey. IEEE Access, 9, 20184-20205. doi.org/10.1109/ACCESS.2021.3053094.
  • McCarthy (1956). A Proposal For The Dartmouth Summer Research Project On Artificial İntelligence. Erişim: https://raysolomonoff.com/dartmouth/boxa/dart564props.pdf.
  • McCarthy, S., & Alaghband, G. (2023). Enhancing Financial Market Analysis and Prediction with Emotion Corpora and News Co-Occurrence Network. Journal of Risk and Financial Management, 16(4), 226. doi.org/10.3390/jrfm16040226.
  • McCulloch, W., & Pitts, W. (1943). A Logical Calculus of Ideas Immanent in Nervous Activity. Bulletin of Mothemnticnl Biology Vol: 52, No. l/2., 99-115.
  • Microsoft. (2023). HoloLens and Education. https://www.microsoft.com. Erişim Tarihi: 08.11.2024). Minohara, T. (2006). Fault Tolerant Training of Neural Networks for Learning Vector Quantization. ICONIP: Neural Information Processing. 786-795.
  • Minsky, M., & Papert, S. (1969). Perceptrons: An introduction to computational geometry. MIT Press.
  • Nabiyev, V. V. (2016). Yapay zekâ: Teori ve uygulamaları. Seçkin Yayıncılık.
  • Nabiyev, V.V., & Erümit, A.K. (2020). Eğitimde Yapay Zekâ: Kuramdan Uygulamaya. Pegem Yayınları, 1. Baskı, Ankara.
  • Nasr, M., Islam, M. M., Shehata, S., Karray, F., & Quintana, Y. (2021). Smart healthcare in the age of AI: Recent advances, challenges, and future prospects. IEEE Access, 9, 145248-145270. doi.org/10.48550/arXiv.2107.03924.
  • Nasteski, V. (2017). An overview of the supervised machine learning methods. Horizons, 4(1), Article P05. doi.org/10.20544/HORIZONS.B.04.1.17.P05
  • Newell, A., & Simon, H. A. (1976). Computer Science as Empirical Inquiry: Symbols and Search. Communications of the ACM, 19(3), 113-126.
  • Niessen, L. W., Grijseels, E. W. and Rutten, F. F. H. (2000). The Evidence Based Approach in Health Policy and Health Care Delivery. Social Science and Medicine, 51(6): 859-869.
  • Nilsson, N. J. (2010). The Quest for Artificial Intelligence: A History of Ideas and Achievements. Cambridge University Press.
  • OECD (2021). AI and the Future of Skills, Volume 1: Capabilities and Assessments, Educational Research and Innovation, OECD Publishing, doi.org/10.1787/5ee71f34-en.
  • OECD (2023). Putting AI to the test: How does the performance of GPT and 15-year-old students in PISA compare?, Volume 6: OECD Education Spotlights, No. 6, OECD Publishing, doi.org/10.1787/2c297e0b-en.
  • Oja, E. (1982). Simplified neuron model as a principal component analyzer. Journal of Mathematical Biology, 15(3), 267–273. doi.org/10.1007/BF00275687.
  • Okutan, O. (2006). Yapay Zekâ ile Mobil Robot Kontrolü. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yayımlanmış Yüksek Lisans Tezi. http://tez2.yok.gov.tr/ adresinden edinilmiştir.
  • OpenAI (2023), GPT-4 Technical Report, https://cdn.openai.com/papers/gpt-4.pdf.
  • Osborne, C. (2020), Dutch court rules AI benefits fraud detection system violates EU human rights,( https://www.zdnet.com/article/dutch-court-rules-ai-benefits-fraud-detection-system-violates-eu-human-rights/ Erişim Tarihi: 02.07.2024).
  • Osuna, E., Freund, R., & Girosi, F. (1997). Training support vector machines: An application to face detection. In Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR97) (30–136).
  • Özbilgin, (2023). Uluslararası Hukukun Yaptırım Problemine Özel Hukuk Perspektifinde Alternatif Çözüm: Yapay Zekâ. Yeditepe Üniversitesi, SBE, Yayımlanmış Yüksek Lisans Tezi.
  • Öztemel, E. (2012). Yapay Sinir Ağları, 3. Baskı, Papatya Yayıncılık, İstanbul.
  • Parker, D. (1987). Optimal Algorithms for Adaptive Networks: Second order Back Propagation, Second Order Direct Propagation, and Second Order Hebbian Learning. Proceedings of the IEEE First International Conference on Neural Networks (San Diego, CA) , II, 593--600.
  • Pau, L.F., & Yong, T.P. (1994), Artificial intelligence in economics and finance: A state of the art — 1994: The real estate price and assets and liability analysis case, Handbook of Computational Economics, 1, 405-439.
  • Pavli, A., Theodoridou, M., & Maltezou, H. C. (2021). Post-COVID syndrome: Incidence, clinical spectrum, and challenges for primary healthcare professionals. Archives of Medical Research.
  • Piramuthu, S., Shaw, M.J. & Gentry, J.A., (1994). A Classification Approach Using Multi-Layered Neural Networks. Decision Support Systems, 11(5), 509- 525.
  • Qiu, X. Y., Kang, K., & Zhang, H. X. (2008). Selection of kernel parameters for K-NN. In IEEE International Joint Conference on Neural Networks (IJCNN) (61–65). Ramaswamy, S., & DeClerck, N. (2018). Customer perception analysis using deep learning and NLP. Procedia Computer Science, 140, 170–178. doi.org/10.1016/j.procs.2018.10.326.
  • Raska, M. (2021). The sixth RMA wave: Disruption in military affairs? Journal of strategic studies, 44(4), 456-479.
  • Ravid, S.Y. (2017). Generating Rembrandt: Artificial Intelligence, Copyright, and Accountability in the 3A Era--The Human-like Authors are Already Here- A New Model, Mich. St. L. Rev. 659, 664-666.
  • Reiling, A. D. (2020). Courts and Artificial Intelligence. International Journal for Court Administration, 11(2), 2-10. doi.org/10.36745/ijca.343.
  • Rickli, J.M. (2019). Artificial Intelligence and the Future of Warfare Chapter, Global Risk Report, World Economic Forum. (https://www.researchgate.net/publication/337103254_Artificial_Intelligence_and_the_Future_of_Warfare Erişim Tarihi: 30.09.2024)
  • Roblyer, M. D., & Doering, A. H. (2010). Integrating Educational Technology into Teaching (5th ed.). Boston: Allyn ve Bacon.
  • Rokach, L., & Maimon, O. Z. (2008). Data mining with decision trees: Theory and applications. World Scientific. Roose, K. (2022), A.I.-Generated Art Is Already Transforming Creative Work, The New York Times, https://www.nytimes.com/2022/10/21/technology/ai-generated-art-jobs-dall-e-2.html.4.
  • Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408. doi.org/10.1037/h0042519.
  • Rossintelligence (t.y.), (https://www.rossintelligence.com/about-us, Erişim Tarihi: 08.04.2024).
  • Ruffle, J. K., Kane, J. A., Hopfner, F., & Shura, R. D. (2019). Predictive models in personalized medicine: Applications, challenges, and ethical considerations. Journal of Translational Medicine, 17(1), 42.
  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536. doi.org/10.1038/323533a0.
  • Russell, S., & Norvig, P. (2020). Artificial intelligence: A modern approach, 4. Baskı. Pearson.
  • Sağıroğlu, Ş., Beşdok, E., & Erler, M. (2003). Mühendislikte Yapay Zeka Uygulamaları- I: Yapay Sinir Ağları, Ufuk Yayıncılık, Kayseri.
  • Şahin, A. (2020). İleri Zamanlı Kan Glikoz Değeri Tahmini. Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Yayımlanmış Yüksek Lisans Tezi. http://tez2.yok.gov.tr/ adresinden edinilmiştir.
  • Salakhutdinov, R., & Hinton, G. (2009). Deep Boltzmann Machines. In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) (3–11).
  • Samuel A.L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of research and development. 3(3):210-29.
  • Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks. 61: 85–117. doi:10.1016/j.neunet.2014.09.003.
  • Shaheen, M.Y. (2021). Applications of Artificial Intelligence (AI) in healthcare: A review. ScienceOpen Preprints. doi: 10.14293/S2199-1006.1.SOR-.PPVRY8K.v1.
  • Shannon, C.E. (1948). A Mathematical Theory of Communication. The Bell System Technical Journal, Vol:27, 379-423. doi.org/10.1002/j.1538-7305.1948.tb01338.x.
  • Simpson, P.K. (1989). Artificial neural networks. Pergamon Press, New York.
  • Sleeman, D., & Brown, J. S. (1982). Intelligent tutoring systems. Academic Press.
  • Smolensky, P. (1986). Information processing in dynamical systems: Foundations of harmony theory. In D. E. Rumelhart, J. L. McClelland, & PDP Research Group (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition. Volume 1: Foundations (194–281). Cambridge, MA: MIT Press.
  • Song, H. A., & Lee, S.-Y. (2013). Hierarchical representation using NMF. In International Conference on Neural Information Processing (466–473). doi: 10.1007/978-3-642-42054-2_58.
  • Srivastava, R. K., Greff, K., & Schmidhuber, J. (2015). Training very deep networks. In Proceedings of the 28th International Conference on Neural Information Processing Systems (NIPS’15), Vol. 2 (2377–2385).
  • Su, F., Yuan, P., Wang, Y., & Zhangcorresponding, C. (2016). The superior fault tolerance of artificial neural network training with a fault/noise injection-based genetic algorithm. Protein Cell. 2016 Oct; 7(10), 735–748. doi:10.1007/s13238-016-0302-5.
  • Sümer, S. Y. (2021). Ceza Yargılamasının Geleceği: Robot Hâkim. Dokuz Eylül Üniversitesi Hukuk Fakültesi Dergisi, (23), 1543-1591. doi.org/10.33717/deuhfd.998255.
  • Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction (2nd ed.). MIT Press.
  • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2014). Going deeper with convolutions. arXiv preprint arXiv:1409.4842.
  • Taher, K. A., Jisan, B. M. Y., & Rahman, M. M. (2019). Network intrusion detection using supervised machine learning technique with feature selection. International Conference on Robotics, DOI: 10.1109/ICREST.2019.8644161.
  • Tan, P.-N., Steinbach, M., Karpatne, A., & Kumar, V. (2013). Introduction to data mining (2nd ed.). Addison-Wesley.
  • Taylor, G. W., Hinton, G. E., & Roweis, S. T. (2006). Modeling human motion using binary latent variables. In Advances in Neural Information Processing Systems 19. MIT Press. (1345–1352).
  • Tebelkıs, J. (1995). Speech Recognition using Neural Networks, Thesis (PhD), School of Computer Science Carnegie Mellon University, Pennsylvania.
  • Themarkup (t.y.), (https://www.ebrevia.com/#homepage, Erişim Tarihi: 12.03.2024).
  • Thintech STM (2019). İleri Sağlık Teknolojileri I: Akıllı Sağlık Uygulamaları ve Veri Analizi İle Sağlık Sorunlarını Tanımlamak, (https://thinktech.stm.com.tr/tr/ileri-saglik-teknolojileri-i-akilli-saglik-uygulamalari-ve-veri-analizi-ile-saglik-sorunlarini-tanimlamak Erişim Tarihi: 29.09.2024).
  • Tjandra, S., Alexandra, A., & Warsito, P. (2015). Determining citizen complaints to the appropriate government departments using KNN algorithm. Proceedings of the International Conference on Information Technology and Electrical Engineering (ICITEE), 2–5.
  • Total Military Insight. (2023). Enhancing Security: The Role of AI for Threat Detection. (www.totalmilitaryinsight.com, Erişim Tarihi: 29.08.2024).
  • Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59 (236), 433-460. doi.org/10.1093/mind/LIX.236.433.
  • Türkel, S. ve Yeşilkuş, F. (2020). Dijital Dönüşüm Paradigması: Endüstri 4.0. Avrasya Sosyal ve Ekonomi Araştırmaları Dergisi (ASEAD) Eurasian Journal of Researches in Social and Economics (EJRSE), 7(5), 332-346.
  • Unsupervised Learning: Algorithms and Examples, (2021), (https://www.altexsoft.com/blog/unsupervised-machine-learning/ Erişim Tarihi: 25.11.2024).
  • Usama, M., Qadir, J., Raza, A., Arif, H., Yau, K.-L. A., Elkhatib, Y., Hussain, A., & Al-Fuqaha, A. (2019). Unsupervised machine learning for networking: Techniques, applications, and research challenges. IEEE Access, 7, 65579–65615. doi.org/10.1109/ACCESS.2019.2916648.
  • Vapnik, V. (1995). The nature of statistical learning theory. Springer-Verlag.
  • Wang, W., Zhao, M., & Wang, J. (2018). Effective android malware detection with a hybrid model based on deep autoencoder and convolutional neural network. Journal of Ambient Intelligence and Humanized Computing. doi.org/10.1007/s12652-018-0803-6.
  • Wang, Y., & Yan, G. (2021). Survey on the application of deep learning in algorithmic trading. Data Science and Financial Economics, 1(2), 345-361. doi.org/10.3934/DSFE.2021019.
  • Webb, G. I. (2017). Naïve Bayes. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of Machine Learning and Data Mining. Springer.
  • Weston, J., Ratle, F., Mobahi, H., & Collobert, R. (2012). Deep learning via semi-supervised embedding. In Neural networks: Tricks of the trade (639–655). Springer.
  • Woolf, B. P. (2009). Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-learning. Morgan Kaufmann.
  • Yeh, R. A., Chen, C., Lim, T.-Y., Schwing, A. G., Hasegawa-Johnson, M., & Do, M. N. (2017). Semantic image inpainting with deep generative models. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2), 4). doi.org/10.1109/CVPR.2017.4.
  • Yingqiu, L., Wei, L., & Yunchun, L. (2007). Network traffic classification using K-means clustering. In Proceedings of the 2nd International Multi-Symposium on Computer and Computational Sciences (IMSCCS) (pp. 360–365).
  • Young, L. (2023), Companies Are Slow to Adopt Robot-Operated ‘Dark’ Warehouses, Wall Street Journal, https://www.wsj.com/articles/companies-are-slow-to-adopt-robot-operated-dark-warehouses46e1c887.
  • Yurtoğlu, H. (2005). Yapay sinir ağları metodolojisi ile öngörü modellemesi: bazı makroekonomik değişkenler için Türkiye örneği. DPT Uzmanlık Tezi, Ankara.
  • Zawacki-Richter, O., Marinsky, A., & Wiatrowski, M. (2019). Systematic review of research on artificial intelligence in higher education: Trends, challenges, and future directions. International Journal of Educational Technology in Higher Education, 16(1), 1-20.
  • Zell, A. (1994). Simulation of Neural Networks. 1st ed. Addison-Wesley. ISBN 3-89319-554-8.
  • Zeng, K., Yu, J., Wang, R., Li, C., & Tao, D. (2017). Coupled deep autoencoder for single image super-resolution. IEEE Transactions on Cybernetics, 47(1), 27–37. doi.org/10.1109/TCYB.2016.2523960.
Toplam 190 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilgi Sistemleri (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Hüseyin İşcan 0000-0002-3121-4007

Ayşe Durgun 0000-0002-8062-7473

Yayımlanma Tarihi 30 Aralık 2024
Gönderilme Tarihi 26 Ekim 2024
Kabul Tarihi 16 Aralık 2024
Yayımlandığı Sayı Yıl 2024Cilt: 16 Sayı: 4

Kaynak Göster

APA İşcan, H., & Durgun, A. (2024). Yapay Zekâ: Alt Dalları ve Uygulama Alanları. Aksaray Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, 16(4), 201-234. https://doi.org/10.52791/aksarayiibd.1574207