Derleme
BibTex RIS Kaynak Göster

Dopaminin Biyokimyasal Temelleri ve Nörofinansal Karar Verme Üzerindeki Rolü

Yıl 2025, Cilt: 17 Sayı: 4, 263 - 276, 30.12.2025
https://doi.org/10.52791/aksarayiibd.1708701

Öz

Nörofinans veya nöroekonomi genel hatlarıyla üç ana kısımda incelemeye konu edilir. Bunlardan ilki beynin spesifik bölgeleri (özellikle frontal korteks ile limbik sistem arasındaki ilişkiler) üzerinden yapılan çalışmalardır. Hangi bölgelerin hangi durumlarda aktivasyon gösterdiği üzerine kurgulanmıştır. İkincisi ise psikopatoloji üzerinden yürütülen çalışmaları ihtiva eder. Son olarak da beynin kimyasalları üzerinden, özellikle de nörotransmitterler ve endokrin sistem üzerinden yapılan çalışmalara dayanmaktadır. Bu çalışmada söz konusu alanda en çok çalışılan nörokimyasallardan biri olan dopamine ilişkin betimleyici bir resim çizilmeye ve elde edilen bulgular nörofinans terminolojisine indirgenmeye çalışılmıştır. Böylelikle çalışma günlük hayatta sıklıkla haz kimyasalı olarak bilinen şeyin çok daha fazla ve hazdan öte bir şey olduğunun gösterilmesi amacına ve bugüne kadar imkanlar dahilinde gelinen noktada bilimsel çalışmalar derlenerek dopaminerjik sistemin anlaşılmasına katkıda bulunulması hedeflenmiştir.

Kaynakça

  • Assadi, S. M., Yücel, M., & Pantelis, C. (2009). Dopamine modulates neural networks involved in effort-based decision-making. Neuroscience & Biobehavioral Reviews, 33(3), 383–393.
  • Baarendse, P. J., Winstanley, C. A., & Vanderschuren, L. J. (2013). Simultaneous blockade of dopamine and noradrenaline reuptake promotes disadvantageous decision making in a rat gambling task. Psychopharmacology, 225, 719–731.
  • Bailey, M. R., Chun, E., Schipani, E., Balsam, P. D., & Simpson, E. H. (2020). Dissociating the effects of dopamine D2 receptors on effort-based versus value-based decision making using a novel behavioral approach. Behavioral Neuroscience, 134(2), 101.
  • Balasubramani, P. P., Chakravarthy, V. S., Ravindran, B., & Moustafa, A. A. (2014). An extended reinforcement learning model of basal ganglia to understand the contributions of serotonin and dopamine in risk-based decision making, reward prediction, and punishment learning. Frontiers in Computational Neuroscience, 8, 47.
  • Bardgett, M. E., Depenbrock, M., Downs, N., Points, M., & Green, L. (2009). Dopamine modulates effort-based decision making in rats. Behavioral Neuroscience, 123(2), 242.
  • Beierholm, U., Guitart-Masip, M., Economides, M., Chowdhury, R., Düzel, E., Dolan, R., & Dayan, P. (2013). Dopamine modulates reward-related vigor. Neuropsychopharmacology, 38(8), 1495–1503.
  • Beste, C., Adelhöfer, N., Gohil, K., Passow, S., Roessner, V., & Li, S. C. (2018). Dopamine modulates the efficiency of sensory evidence accumulation during perceptual decision making. International Journal of Neuropsychopharmacology, 21(7), 649–655.
  • Burdick, K. E., Braga, R. J., Gopin, C. B., & Malhotra, A. K. (2014). Dopaminergic influences on emotional decision making in euthymic bipolar patients. Neuropsychopharmacology, 39(2), 274–282.
  • Burke, C. J., Soutschek, A., Weber, S., Raja Beharelle, A., Fehr, E., Haker, H., & Tobler, P. N. (2018). Dopamine receptor-specific contributions to the computation of value. Neuropsychopharmacology, 43(6), 1415–1424.
  • Byrne, K. A., Norris, D. D., & Worthy, D. A. (2016). Dopamine, depressive symptoms, and decision-making: The relationship between spontaneous eye blink rate and depressive symptoms predicts Iowa Gambling Task performance. Cognitive, Affective, & Behavioral Neuroscience, 16, 23–36.
  • Caplin, A., & Dean, M. (2007). Dopamine and reward prediction error: An axiomatic approach to neuroeconomics. SSRN.
  • Caplin, A., & Dean, M. (2008). Dopamine, reward prediction error, and economics. The Quarterly Journal of Economics, 123(2), 663–701.
  • Caplin, A., Dean, M., Glimcher, P. W., & Rutledge, R. B. (2010). Measuring beliefs and rewards: A neuroeconomic approach. The Quarterly Journal of Economics, 125(3), 923–960.
  • Carlson, N. R. (2020). Fizyolojik Psikoloji. Ankara: Nobel Yayınevi.
  • Carpenter, J. P., Garcia, J. R., & Lum, J. K. (2011). Dopamine receptor genes predict risk preferences, time preferences, and related economic choices. Journal of Risk and Uncertainty, 42, 233–261.
  • Chakroun, K., Mathar, D., Wiehler, A., Ganzer, F., & Peters, J. (2020). Dopaminergic modulation of the exploration/exploitation trade-off in human decision-making. eLife, 9, e51260.
  • Chantranupong, L., Beron, C. C., Zimmer, J. A., Wen, M. J., Wang, W., & Sabatini, B. L. (2023). Dopamine and glutamate regulate striatal acetylcholine in decision-making. Nature, 621(7979), 577–585.
  • Chen, X., Voets, S., Jenkinson, N., & Galea, J. M. (2020). Dopamine-dependent loss aversion during effort-based decision-making. Journal of Neuroscience, 40(3), 661–670.
  • Chong, T. T., Bonnelle, V., Manohar, S., Veromann, K. R., Muhammed, K., Tofaris, G. K., ... Husain, M. (2015). Dopamine enhances willingness to exert effort for reward in Parkinson's disease. Cortex, 69, 40–46.
  • Clark, C. A., & Dagher, A. (2014). The role of dopamine in risk taking: A specific look at Parkinson’s disease and gambling. Frontiers in Behavioral Neuroscience, 8, 196.
  • Cocker, P. J., Dinelle, K., Kornelson, R., Sossi, V., & Winstanley, C. A. (2012). Irrational choice under uncertainty correlates with lower striatal D2/3 receptor binding in rats. Journal of Neuroscience, 32(44), 15450–15457.
  • Cools, R. (2016). The costs and benefits of brain dopamine for cognitive control. Wiley Interdisciplinary Reviews: Cognitive Science, 7(5), 317–329.
  • Cools, R., Nakamura, K., & Daw, N. D. (2011). Serotonin and dopamine: Unifying affective, activational, and decision functions. Neuropsychopharmacology, 36(1), 98–113.
  • Costa, V. D., Tran, V. L., Turchi, J., & Averbeck, B. B. (2014). Dopamine modulates novelty seeking behavior during decision making. Behavioral Neuroscience, 128(5), 556.
  • Coulthard, E. J., Bogacz, R., Javed, S., Mooney, L. K., Murphy, G., Keeley, S., & Whone, A. L. (2012). Distinct roles of dopamine and subthalamic nucleus in learning and probabilistic decision making. Brain, 135(12), 3721–3734.
  • Cremer, A., Kalbe, F., Müller, J. C., Wiedemann, K., & Schwabe, L. (2023). Disentangling the roles of dopamine and noradrenaline in the exploration-exploitation tradeoff during human decision-making. Neuropsychopharmacology, 48(7), 1078–1086.
  • De Martino, B., Kumaran, D., Holt, B., & Dolan, R. J. (2009). The neurobiology of reference-dependent value computation. Journal of Neuroscience, 29(12), 3833–3842.
  • Denk, F., Walton, M. E., Jennings, K. A., Sharp, T., Rushworth, M. F., & Bannerman, D. M. (2005). Differential involvement of serotonin and dopamine systems in cost-benefit decisions about delay or effort. Psychopharmacology, 179, 587–596.
  • Deserno, L., Schlagenhauf, F., & Heinz, A. (2016). Striatal dopamine, reward, and decision making in schizophrenia. Dialogues in Clinical Neuroscience, 18(1), 77–89.
  • Dreber, A., Apicella, C. L., Eisenberg, D. T., Garcia, J. R., Zamore, R. S., Lum, J. K., & Campbell, B. (2009). The 7R polymorphism in the dopamine receptor D4 gene (DRD4) is associated with financial risk taking in men. Evolution and Human Behavior, 30(2), 85–92.
  • Dreber, A., Rand, D. G., Wernerfelt, N., Garcia, J. R., Vilar, M. G., Lum, J. K., & Zeckhauser, R. (2011). Dopamine and risk choices in different domains: Findings among serious tournament bridge players. Journal of Risk and Uncertainty, 43, 19–38.
  • Dreher, J. C., Kohn, P., & Berman, K. F. (2006). Neural coding of distinct statistical properties of reward information in humans. Cerebral Cortex, 16(4), 561–573.
  • Enax, L., & Weber, B. (2016). Neurobiology of food choices—between energy homeostasis, reward system, and neuroeconomics. e-Neuroforum, 7, 13–22.
  • Errante, E. L., Chakkalamuri, M., Akinbo, O. I., Yohn, S. E., Salamone, J. D., & Matuszewich, L. (2021). Sex differences in effort-related decision-making: Role of dopamine D2 receptor antagonism. Psychopharmacology, 238, 1609–1619.
  • Filla, I., Bailey, M. R., Schipani, E., Winiger, V., Mezias, C., Balsam, P. D., & Simpson, E. H. (2018). Striatal dopamine D2 receptors regulate effort but not value-based decision making and alter the dopaminergic encoding of cost. Neuropsychopharmacology, 43(11), 2180–2189.
  • Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299(5614), 1898–1902.
  • Floresco, S. B., & Magyar, O. (2006). Mesocortical dopamine modulation of executive functions: Beyond working memory. Psychopharmacology, 188, 567–585.
  • Floresco, S. B., Tse, M. T., & Ghods-Sharifi, S. (2008). Dopaminergic and glutamatergic regulation of effort-and delay-based decision making. Neuropsychopharmacology, 33(8), 1966–1979.
  • França, T. F., & Pompeia, S. (2023). Reappraising the role of dopamine in adolescent risk-taking behavior. Neuroscience & Biobehavioral Reviews, 147, 105085.
  • Freels, T. G., Gabriel, D. B., Lester, D. B., & Simon, N. W. (2020). Risky decision-making predicts dopamine release dynamics in nucleus accumbens shell. Neuropsychopharmacology, 45(2), 266–275.
  • Gan, J. O., Walton, M. E., & Phillips, P. E. (2010). Dissociable cost and benefit encoding of future rewards by mesolimbic dopamine. Nature Neuroscience, 13(1), 25–27.
  • Georgiou, P., Zanos, P., Bhat, S., Tracy, J. K., Merchenthaler, I. J., McCarthy, M. M., & Gould, T. D. (2018). Dopamine and stress system modulation of sex differences in decision making. Neuropsychopharmacology, 43(2), 313–324.
  • Gershman, S. J., & Uchida, N. (2019). Believing in dopamine. Nature Reviews Neuroscience, 20(11), 703–714.
  • Groman, S. M., Smith, N. J., Petrulli, J. R., Massi, B., Chen, L., Ropchan, J., ... Taylor, J. R. (2016). Dopamine D3 receptor availability is associated with inflexible decision making. Journal of Neuroscience, 36(25), 6732–6741.
  • Güngör, S. (2019). Genes involved in both dopaminergic and serotonergic pathways and financial decision making. Prizren Social Science Journal, 3(2), 21–26.
  • Hauser, T. U., Eldar, E., & Dolan, R. J. (2017). Separate mesocortical and mesolimbic pathways encode effort and reward learning signals. Proceedings of the National Academy of Sciences, 114(35).
  • Hernandez, G., & Cheer, J. F. (2015). To act or not to act: endocannabinoid/dopamine interactions in decision-making. Frontiers in Behavioral Neuroscience, 9, 336.
  • Hosking, J. G., Floresco, S. B., & Winstanley, C. A. (2015). Dopamine antagonism decreases willingness to expend physical, but not cognitive, effort: A comparison of two rodent cost/benefit decision-making tasks. Neuropsychopharmacology, 40(4), 1005–1015.
  • Hynes, T. J., Chernoff, C. S., Hrelja, K. M., Tse, M. T., Avramidis, D. K., Lysenko-Martin, M. R., ... Winstanley, C. A. (2024). Win-paired cues modulate the effect of dopamine neuron sensitization on decision making and cocaine self-administration: Divergent effects across sex. Biological Psychiatry, 95(3), 220–230.
  • Hynes, T. J., Russell, B., Ma, L., Kaur, M., & Winstanley, C. A. (2021). Dopamine neurons gate the intersection of cocaine use, decision making, and impulsivity. Addiction Biology, 26(6), e13022.
  • Jenni, N. L., Larkin, J. D., & Floresco, S. B. (2017). Prefrontal dopamine D1 and D2 receptors regulate dissociable aspects of decision making via distinct ventral striatal and amygdalar circuits. Journal of Neuroscience, 37(26), 6200–6213.
  • Jenni, N. L., Li, Y. T., & Floresco, S. B. (2021). Medial orbitofrontal cortex dopamine D1/D2 receptors differentially modulate distinct forms of probabilistic decision-making. Neuropsychopharmacology, 46(7), 1240–1251.
  • Kim, S. J., Kim, Y. S., Lee, H. S., Kim, S. Y., & Kim, C. H. (2006). An interaction between the serotonin transporter promoter region and dopamine transporter polymorphisms contributes to harm avoidance and reward dependence traits in normal healthy subjects. Journal of Neural Transmission, 113, 877–886.
  • Kobayashi, S., Asano, K., Matsuda, N., & Ugawa, Y. (2019). Dopaminergic influences on risk preferences of Parkinson’s disease patients. Cognitive, Affective, & Behavioral Neuroscience, 19, 88–97.
  • Kohno, M., Nurmi, E. L., Laughlin, C. P., Morales, A. M., Gail, E. H., Hellemann, G. S., & London, E. D. (2016). Functional genetic variation in dopamine signaling moderates prefrontal cortical activity during risky decision making. Neuropsychopharmacology, 41(3), 695–703.
  • Kuhnen, C. M., & Chiao, J. Y. (2009). Genetic determinants of financial risk taking. PloS ONE, 4(2), e4362. Kurniawan, I. T., Guitart-Masip, M., & Dolan, R. J. (2011). Dopamine and effort-based decision making. Frontiers in Neuroscience, 5, 9616.
  • Lewis, M. D. (2011). Dopamine and the neural “now”: Essay and review of Addiction: A disorder of choice. Perspectives on Psychological Science, 6(2), 150–155.
  • Li, S. C., Biele, G., Mohr, P. N., & Heekeren, H. R. (2007). Aging and neuroeconomics: Insights from research on neuromodulation of reward-based decision making. Analyse & Kritik, 29(1), 97–111.
  • Mai, B., Sommer, S., & Hauber, W. (2012). Motivational states influence effort-based decision making in rats: The role of dopamine in the nucleus accumbens. Cognitive, Affective, & Behavioral Neuroscience, 12, 74–84.
  • Matas-Navarro, P., Carratalá-Ros, C., Olivares-García, R., Martínez-Verdú, A., Salamone, J. D., & Correa, M. (2023). Sex and age differences in mice models of effort-based decision-making and anergia in depression: The role of dopamine, and cerebral-dopamine-neurotrophic-factor. Psychopharmacology, 240(11), 2285–2302.
  • Messias, J. P., Paula, J. R., Grutter, A. S., Bshary, R., & Soares, M. C. (2016). Dopamine disruption increases negotiation for cooperative interactions in a fish. Scientific Reports, 6(1), 20817.
  • Miendlarzewska, E. A., Kometer, M., & Preuschoff, K. (2017). Neurofinance. In Neuroscience in Organizational Research (Vol. 1, pp. 27–47).
  • Mitchell, M. R., Weiss, V. G., Beas, B. S., Bizon, J. L., & Setlow, B. (2014). Adolescent risk taking, cocaine self-administration, and striatal dopamine signaling. Neuropsychopharmacology, 39(4), 955–962.
  • Mohebi, A., Pettibone, J. R., Hamid, A. A., Wong, J. M., Vinson, L. T., Patriarchi, T., ... Berke, J. D. (2019). Dissociable dopamine dynamics for learning and motivation. Nature, 570(7759), 65–70.
  • Mott, A. M., Nunes, E. J., Collins, L. E., Port, R. G., Sink, K. S., Hockemeyer, J., ... Salamone, J. D. (2009). The adenosine A2A antagonist MSX-3 reverses the effects of the dopamine antagonist haloperidol on effort-related decision making in a T-maze cost/benefit procedure. Psychopharmacology, 204, 103–112.
  • Nasrallah, N. A., Clark, J. J., Collins, A. L., Akers, C. A., Phillips, P. E., & Bernstein, I. L. (2011). Risk preference following adolescent alcohol use is associated with corrupted encoding of costs but not rewards by mesolimbic dopamine. Proceedings of the National Academy of Sciences, 108(13), 5466–5471.
  • Nicola, S. M., Surmeier, D. J., & Malenka, R. C. (2000). Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annual Review of Neuroscience, 23(1), 185–215.
  • Niv, Y. (2007). Cost, benefit, tonic, phasic: What do response rates tell us about dopamine and motivation? Annals of the New York Academy of Sciences, 1104(1), 357–376.
  • Onge, J. R., Ahn, S., Phillips, A. G., & Floresco, S. B. (2012). Dynamic fluctuations in dopamine efflux in the prefrontal cortex and nucleus accumbens during risk-based decision making. Journal of Neuroscience, 32(47), 16880–16891.
  • Ortiz-Teran, E., Diez, I., Sepulcre, J., Lopez-Pascual, J., & Ortiz, T. (2021). Connectivity adaptations in dopaminergic systems define the brain maturity of investors. Scientific Reports, 11(1), 11671.
  • Oswald, L. M., Wand, G. S., Wong, D. F., Brown, C. H., Kuwabara, H., & Brašić, J. R. (2015). Risky decision-making and ventral striatal dopamine responses to amphetamine: A positron emission tomography [11C]raclopride study in healthy adults. NeuroImage, 113, 26–36.
  • Pes, R., Godar, S. C., Fox, A. T., Burgeno, L. M., Strathman, H. J., Jarmolowicz, D. P., ... Bortolato, M. (2017). Pramipexole enhances disadvantageous decision-making: Lack of relation to changes in phasic dopamine release. Neuropharmacology, 114, 77–87.
  • Peters, J., Vega, T., Weinstein, D., Mitchell, J., & Kayser, A. (2020). Dopamine and risky decision-making in gambling disorder. eNeuro, 7(3), 1–13.
  • Peterson, R. L. (2007). Inside the Investor's Brain: The Power of Mind Over Money. Hoboken, NJ: John Wiley & Sons. Rajan, R., Krishnan, S., Sarma, G., Sarma, S. P., & Kishore, A. (2018). Dopamine receptor D3 rs6280 is associated with aberrant decision‐making in Parkinson's disease. Movement Disorders Clinical Practice, 5(4), 413–416.
  • Reuter, M., Felten, A., Penz, S., Mainzer, A., Markett, S., & Montag, C. (2013). The influence of dopaminergic gene variants on decision making in the ultimatum game. Frontiers in Human Neuroscience, 7, 242.
  • Roe, B. E., Tilley, M. R., Gu, H. H., Beversdorf, D. Q., Sadee, W., Haab, T. C., & Papp, A. C. (2009). Financial and psychological risk attitudes associated with two single nucleotide polymorphisms in the nicotine receptor (CHRNA4) gene. PLoS ONE, 4(8), e6704.
  • Sáez, I., Zhu, L., Set, E., Kayser, A., & Hsu, M. (2015). Dopamine modulates egalitarian behavior in humans. Current Biology, 25(7), 912–919.
  • Salamone, J. D., Correa, M., Mingote, S. M., Weber, S. M., & Farrar, A. M. (2006). Nucleus accumbens dopamine and the forebrain circuitry involved in behavioral activation and effort-related decision making: Implications for understanding anergia and psychomotor slowing in depression. Current Psychiatry Reviews, 2(2), 267–280.
  • Salamone, J. D., Correa, M., Nunes, E. J., Randall, P. A., & Pardo, M. (2012). The behavioral pharmacology of effort‐related choice behavior: Dopamine, adenosine and beyond. Journal of the Experimental Analysis of Behavior, 97(1), 125–146.
  • Salamone, J. D., Correa, M., Yang, J. H., Rotolo, R., & Presby, R. (2018). Dopamine, effort-based choice, and behavioral economics: Basic and translational research. Frontiers in Behavioral Neuroscience, 12, 52.
  • Schindler, A. G., Soden, M. E., Zweifel, L. S., & Clark, J. J. (2016). Reversal of alcohol-induced dysregulation in dopamine network dynamics may rescue maladaptive decision-making. Journal of Neuroscience, 36(13), 3698–3708.
  • Schlösser, R. G., Nenadic, I., Wagner, G., Zysset, S., Koch, K., & Sauer, H. (2009). Dopaminergic modulation of brain systems subserving decision making under uncertainty: A study with fMRI and methylphenidate challenge. Synapse, 63(5), 429–442.
  • Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80(1), 1–27.
  • Schultz, W. (2007b). Behavioral dopamine signals. Trends in Neurosciences, 30(5), 203–210.
  • Schultz, W. (2010). Dopamine signals for reward value and risk: Basic and recent data. Behavioral and Brain Functions, 6, 1–9.
  • Schultz, W. (2016). Dopamine reward prediction error coding. Dialogues in Clinical Neuroscience, 18(1), 23–32.
  • Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–1599.
  • Siju, K. P., De Backer, J. F., & Grunwald Kadow, I. C. (2021). Dopamine modulation of sensory processing and adaptive behavior in flies. Cell and Tissue Research, 383(1), 207–225.
  • Simon, N. W., Vokes, C. M., Taylor, A. B., Haberman, R. P., Bizon, J. L., & Setlow, B. (2011). Dopaminergic modulation of risky decision-making. Journal of Neuroscience, 31(48), 17460–17470.
  • Smith, D. V., & Huettel, S. A. (2010). Decision neuroscience: Neuroeconomics. Wiley Interdisciplinary Reviews: Cognitive Science, 1(6), 854–871.
  • Soutschek, A., Jetter, A., & Tobler, P. N. (2023). Toward a unifying account of dopamine’s role in cost-benefit decision making. Biological Psychiatry Global Open Science, 3(2), 179–186.
  • St Onge, J. R., & Floresco, S. B. (2009). Dopaminergic modulation of risk-based decision making. Neuropsychopharmacology, 34(3), 681–697.
  • Stopper, C. M., Khayambashi, S., & Floresco, S. B. (2013). Receptor-specific modulation of risk-based decision making by nucleus accumbens dopamine. Neuropsychopharmacology, 38(5), 715–728.
  • Takahashi, T. (2011). Biophysics of risk aversion based on neurotransmitter receptor theory. arXiv preprint arXiv:1107.0777. https://arxiv.org/abs/1107.0777
  • Torta, D. M., Castelli, L., Zibetti, M., Lopiano, L., & Geminiani, G. (2009). On the role of dopamine replacement therapy in decision-making, working memory, and reward in Parkinson’s disease: Does the therapy-dose matter? Brain and Cognition, 71(2), 84–91.
  • van Enkhuizen, J., Henry, B. L., Minassian, A., Perry, W., Milienne-Petiot, M., Higa, K. K., ... & Young, J. W. (2014). Reduced dopamine transporter functioning induces high-reward risk-preference consistent with bipolar disorder. Neuropsychopharmacology, 39(13), 3112–3122.
  • van Gaalen, M. M., van Koten, R., Schoffelmeer, A. N., & Vanderschuren, L. J. (2006). Critical involvement of dopaminergic neurotransmission in impulsive decision making. Biological Psychiatry, 60(1), 66–73.
  • Verharen, J. P., Adan, R. A., & Vanderschuren, L. J. (2019). Differential contributions of striatal dopamine D1 and D2 receptors to component processes of value-based decision making. Neuropsychopharmacology, 44(13), 2195–2204.
  • Volkow, N. D., Wang, G. J., Fowler, J. S., Tomasi, D., & Telang, F. (2011). Addiction: Beyond dopamine reward circuitry. Proceedings of the National Academy of Sciences, 108(37), 15037–15042.
  • Voon, V., Gao, J., Brezing, C., Symmonds, M., Ekanayake, V., Fernandez, H., ... & Hallett, M. (2011). Dopamine agonists and risk: Impulse control disorders in Parkinson’s disease. Brain, 134(5), 1438–1446.
  • Wang, S., Hu, S. H., Shi, Y., & Li, B. M. (2017). The roles of the anterior cingulate cortex and its dopamine receptors in self-paced cost–benefit decision making in rats. Learning & Behavior, 45, 89–99. Westbrook, A., & Braver, T. S. (2016). Dopamine does double duty in motivating cognitive effort. Neuron, 89(4), 695–710. Westbrook, A., & Frank, M. (2018). Dopamine and proximity in motivation and cognitive control. Current Opinion in Behavioral Sciences, 22, 28–34.
  • Wheeler, A. R., Truckenbrod, L. M., Boehnke, A., Kahanek, P., & Orsini, C. A. (2024). Sex differences in sensitivity to dopamine receptor manipulations of risk-based decision making in rats. Neuropsychopharmacology, 49(13), 1978–1988.
  • Wise, R. A., & Robble, M. A. (2020). Dopamine and addiction. Annual Review of Psychology, 71(1), 79–106. Wunderlich, K., Smittenaar, P., & Dolan, R. J. (2012). Dopamine enhances model-based over model-free choice behavior. Neuron, 75(3), 418–424.
  • Yacubian, J., Sommer, T., Schroeder, K., Gläscher, J., Kalisch, R., Leuenberger, B., ... & Büchel, C. (2007). Gene–gene interaction associated with neural reward sensitivity. Proceedings of the National Academy of Sciences, 104(19), 8125–8130.
  • Yaman, B. (2023). Perspective chapter: The role of dopamine receptors in neuropsychiatric diseases. In Parkinson’s Disease—Animal Models, Current Therapies and Clinical Trials. IntechOpen.
  • Yang, J. H., Correa, M., & Salamone, J. D. (2020). The dopamine depleting agent tetrabenazine alters effort-related decision making as assessed by mouse touchscreen procedures. Psychopharmacology, 237, 2845–2854.
  • Yang, J. H., Presby, R. E., Jarvie, A. A., Rotolo, R. A., Fitch, R. H., Correa, M., & Salamone, J. D. (2020). Pharmacological studies of effort-related decision making using mouse touchscreen procedures: Effects of dopamine antagonism do not resemble reinforcer devaluation by removal of food restriction. Psychopharmacology, 237, 33–43.
  • Zald, D. H., & Treadway, M. T. (2017). Reward processing, neuroeconomics, and psychopathology. Annual Review of Clinical Psychology, 13(1), 471–495.
  • Zhong, S., Israel, S., Shalev, I., Xue, H., Ebstein, R. P., & Chew, S. H. (2010). Dopamine D4 receptor gene associated with fairness preference in ultimatum game. PLoS ONE, 5(11), e13765.
  • Zorick, T., Okita, K., Renard, K. B., Mandelkern, M. A., Brody, A. L., & London, E. D. (2022). The effects of citalopram and thalamic dopamine D2/3 receptor availability on decision‐making and loss aversion in alcohol dependence. Psychiatry Journal, 2022(1), 5663274.

Biochemical Basis of Dopamine and Its Role in Neurofinancial Decision Making

Yıl 2025, Cilt: 17 Sayı: 4, 263 - 276, 30.12.2025
https://doi.org/10.52791/aksarayiibd.1708701

Öz

Neurofinance or neuroeconomics is generally examined under three main categories. The first comprises studies focusing on specific brain regions—particularly the interactions between the frontal cortex and the limbic system—and investigates which areas show activation under various decision-making conditions. The second category encompasses research conducted through the lens of psychopathology. The third centers on the brain’s biochemical processes, especially those involving neurotransmitters and the endocrine system. This study aims to provide a descriptive overview of dopamine, one of the most extensively studied neurochemicals in this field, and to interpret the findings within the conceptual framework of neurofinance. In doing so, the study seeks to demonstrate that what is commonly known in everyday language as the 'pleasure chemical' is, in fact, far more complex and functionally diverse than mere hedonic processing. By compiling current scientific findings within the scope of available research, the paper aspires to contribute to a deeper understanding of the dopaminergic system and its role in financial decision-making processes.

Kaynakça

  • Assadi, S. M., Yücel, M., & Pantelis, C. (2009). Dopamine modulates neural networks involved in effort-based decision-making. Neuroscience & Biobehavioral Reviews, 33(3), 383–393.
  • Baarendse, P. J., Winstanley, C. A., & Vanderschuren, L. J. (2013). Simultaneous blockade of dopamine and noradrenaline reuptake promotes disadvantageous decision making in a rat gambling task. Psychopharmacology, 225, 719–731.
  • Bailey, M. R., Chun, E., Schipani, E., Balsam, P. D., & Simpson, E. H. (2020). Dissociating the effects of dopamine D2 receptors on effort-based versus value-based decision making using a novel behavioral approach. Behavioral Neuroscience, 134(2), 101.
  • Balasubramani, P. P., Chakravarthy, V. S., Ravindran, B., & Moustafa, A. A. (2014). An extended reinforcement learning model of basal ganglia to understand the contributions of serotonin and dopamine in risk-based decision making, reward prediction, and punishment learning. Frontiers in Computational Neuroscience, 8, 47.
  • Bardgett, M. E., Depenbrock, M., Downs, N., Points, M., & Green, L. (2009). Dopamine modulates effort-based decision making in rats. Behavioral Neuroscience, 123(2), 242.
  • Beierholm, U., Guitart-Masip, M., Economides, M., Chowdhury, R., Düzel, E., Dolan, R., & Dayan, P. (2013). Dopamine modulates reward-related vigor. Neuropsychopharmacology, 38(8), 1495–1503.
  • Beste, C., Adelhöfer, N., Gohil, K., Passow, S., Roessner, V., & Li, S. C. (2018). Dopamine modulates the efficiency of sensory evidence accumulation during perceptual decision making. International Journal of Neuropsychopharmacology, 21(7), 649–655.
  • Burdick, K. E., Braga, R. J., Gopin, C. B., & Malhotra, A. K. (2014). Dopaminergic influences on emotional decision making in euthymic bipolar patients. Neuropsychopharmacology, 39(2), 274–282.
  • Burke, C. J., Soutschek, A., Weber, S., Raja Beharelle, A., Fehr, E., Haker, H., & Tobler, P. N. (2018). Dopamine receptor-specific contributions to the computation of value. Neuropsychopharmacology, 43(6), 1415–1424.
  • Byrne, K. A., Norris, D. D., & Worthy, D. A. (2016). Dopamine, depressive symptoms, and decision-making: The relationship between spontaneous eye blink rate and depressive symptoms predicts Iowa Gambling Task performance. Cognitive, Affective, & Behavioral Neuroscience, 16, 23–36.
  • Caplin, A., & Dean, M. (2007). Dopamine and reward prediction error: An axiomatic approach to neuroeconomics. SSRN.
  • Caplin, A., & Dean, M. (2008). Dopamine, reward prediction error, and economics. The Quarterly Journal of Economics, 123(2), 663–701.
  • Caplin, A., Dean, M., Glimcher, P. W., & Rutledge, R. B. (2010). Measuring beliefs and rewards: A neuroeconomic approach. The Quarterly Journal of Economics, 125(3), 923–960.
  • Carlson, N. R. (2020). Fizyolojik Psikoloji. Ankara: Nobel Yayınevi.
  • Carpenter, J. P., Garcia, J. R., & Lum, J. K. (2011). Dopamine receptor genes predict risk preferences, time preferences, and related economic choices. Journal of Risk and Uncertainty, 42, 233–261.
  • Chakroun, K., Mathar, D., Wiehler, A., Ganzer, F., & Peters, J. (2020). Dopaminergic modulation of the exploration/exploitation trade-off in human decision-making. eLife, 9, e51260.
  • Chantranupong, L., Beron, C. C., Zimmer, J. A., Wen, M. J., Wang, W., & Sabatini, B. L. (2023). Dopamine and glutamate regulate striatal acetylcholine in decision-making. Nature, 621(7979), 577–585.
  • Chen, X., Voets, S., Jenkinson, N., & Galea, J. M. (2020). Dopamine-dependent loss aversion during effort-based decision-making. Journal of Neuroscience, 40(3), 661–670.
  • Chong, T. T., Bonnelle, V., Manohar, S., Veromann, K. R., Muhammed, K., Tofaris, G. K., ... Husain, M. (2015). Dopamine enhances willingness to exert effort for reward in Parkinson's disease. Cortex, 69, 40–46.
  • Clark, C. A., & Dagher, A. (2014). The role of dopamine in risk taking: A specific look at Parkinson’s disease and gambling. Frontiers in Behavioral Neuroscience, 8, 196.
  • Cocker, P. J., Dinelle, K., Kornelson, R., Sossi, V., & Winstanley, C. A. (2012). Irrational choice under uncertainty correlates with lower striatal D2/3 receptor binding in rats. Journal of Neuroscience, 32(44), 15450–15457.
  • Cools, R. (2016). The costs and benefits of brain dopamine for cognitive control. Wiley Interdisciplinary Reviews: Cognitive Science, 7(5), 317–329.
  • Cools, R., Nakamura, K., & Daw, N. D. (2011). Serotonin and dopamine: Unifying affective, activational, and decision functions. Neuropsychopharmacology, 36(1), 98–113.
  • Costa, V. D., Tran, V. L., Turchi, J., & Averbeck, B. B. (2014). Dopamine modulates novelty seeking behavior during decision making. Behavioral Neuroscience, 128(5), 556.
  • Coulthard, E. J., Bogacz, R., Javed, S., Mooney, L. K., Murphy, G., Keeley, S., & Whone, A. L. (2012). Distinct roles of dopamine and subthalamic nucleus in learning and probabilistic decision making. Brain, 135(12), 3721–3734.
  • Cremer, A., Kalbe, F., Müller, J. C., Wiedemann, K., & Schwabe, L. (2023). Disentangling the roles of dopamine and noradrenaline in the exploration-exploitation tradeoff during human decision-making. Neuropsychopharmacology, 48(7), 1078–1086.
  • De Martino, B., Kumaran, D., Holt, B., & Dolan, R. J. (2009). The neurobiology of reference-dependent value computation. Journal of Neuroscience, 29(12), 3833–3842.
  • Denk, F., Walton, M. E., Jennings, K. A., Sharp, T., Rushworth, M. F., & Bannerman, D. M. (2005). Differential involvement of serotonin and dopamine systems in cost-benefit decisions about delay or effort. Psychopharmacology, 179, 587–596.
  • Deserno, L., Schlagenhauf, F., & Heinz, A. (2016). Striatal dopamine, reward, and decision making in schizophrenia. Dialogues in Clinical Neuroscience, 18(1), 77–89.
  • Dreber, A., Apicella, C. L., Eisenberg, D. T., Garcia, J. R., Zamore, R. S., Lum, J. K., & Campbell, B. (2009). The 7R polymorphism in the dopamine receptor D4 gene (DRD4) is associated with financial risk taking in men. Evolution and Human Behavior, 30(2), 85–92.
  • Dreber, A., Rand, D. G., Wernerfelt, N., Garcia, J. R., Vilar, M. G., Lum, J. K., & Zeckhauser, R. (2011). Dopamine and risk choices in different domains: Findings among serious tournament bridge players. Journal of Risk and Uncertainty, 43, 19–38.
  • Dreher, J. C., Kohn, P., & Berman, K. F. (2006). Neural coding of distinct statistical properties of reward information in humans. Cerebral Cortex, 16(4), 561–573.
  • Enax, L., & Weber, B. (2016). Neurobiology of food choices—between energy homeostasis, reward system, and neuroeconomics. e-Neuroforum, 7, 13–22.
  • Errante, E. L., Chakkalamuri, M., Akinbo, O. I., Yohn, S. E., Salamone, J. D., & Matuszewich, L. (2021). Sex differences in effort-related decision-making: Role of dopamine D2 receptor antagonism. Psychopharmacology, 238, 1609–1619.
  • Filla, I., Bailey, M. R., Schipani, E., Winiger, V., Mezias, C., Balsam, P. D., & Simpson, E. H. (2018). Striatal dopamine D2 receptors regulate effort but not value-based decision making and alter the dopaminergic encoding of cost. Neuropsychopharmacology, 43(11), 2180–2189.
  • Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299(5614), 1898–1902.
  • Floresco, S. B., & Magyar, O. (2006). Mesocortical dopamine modulation of executive functions: Beyond working memory. Psychopharmacology, 188, 567–585.
  • Floresco, S. B., Tse, M. T., & Ghods-Sharifi, S. (2008). Dopaminergic and glutamatergic regulation of effort-and delay-based decision making. Neuropsychopharmacology, 33(8), 1966–1979.
  • França, T. F., & Pompeia, S. (2023). Reappraising the role of dopamine in adolescent risk-taking behavior. Neuroscience & Biobehavioral Reviews, 147, 105085.
  • Freels, T. G., Gabriel, D. B., Lester, D. B., & Simon, N. W. (2020). Risky decision-making predicts dopamine release dynamics in nucleus accumbens shell. Neuropsychopharmacology, 45(2), 266–275.
  • Gan, J. O., Walton, M. E., & Phillips, P. E. (2010). Dissociable cost and benefit encoding of future rewards by mesolimbic dopamine. Nature Neuroscience, 13(1), 25–27.
  • Georgiou, P., Zanos, P., Bhat, S., Tracy, J. K., Merchenthaler, I. J., McCarthy, M. M., & Gould, T. D. (2018). Dopamine and stress system modulation of sex differences in decision making. Neuropsychopharmacology, 43(2), 313–324.
  • Gershman, S. J., & Uchida, N. (2019). Believing in dopamine. Nature Reviews Neuroscience, 20(11), 703–714.
  • Groman, S. M., Smith, N. J., Petrulli, J. R., Massi, B., Chen, L., Ropchan, J., ... Taylor, J. R. (2016). Dopamine D3 receptor availability is associated with inflexible decision making. Journal of Neuroscience, 36(25), 6732–6741.
  • Güngör, S. (2019). Genes involved in both dopaminergic and serotonergic pathways and financial decision making. Prizren Social Science Journal, 3(2), 21–26.
  • Hauser, T. U., Eldar, E., & Dolan, R. J. (2017). Separate mesocortical and mesolimbic pathways encode effort and reward learning signals. Proceedings of the National Academy of Sciences, 114(35).
  • Hernandez, G., & Cheer, J. F. (2015). To act or not to act: endocannabinoid/dopamine interactions in decision-making. Frontiers in Behavioral Neuroscience, 9, 336.
  • Hosking, J. G., Floresco, S. B., & Winstanley, C. A. (2015). Dopamine antagonism decreases willingness to expend physical, but not cognitive, effort: A comparison of two rodent cost/benefit decision-making tasks. Neuropsychopharmacology, 40(4), 1005–1015.
  • Hynes, T. J., Chernoff, C. S., Hrelja, K. M., Tse, M. T., Avramidis, D. K., Lysenko-Martin, M. R., ... Winstanley, C. A. (2024). Win-paired cues modulate the effect of dopamine neuron sensitization on decision making and cocaine self-administration: Divergent effects across sex. Biological Psychiatry, 95(3), 220–230.
  • Hynes, T. J., Russell, B., Ma, L., Kaur, M., & Winstanley, C. A. (2021). Dopamine neurons gate the intersection of cocaine use, decision making, and impulsivity. Addiction Biology, 26(6), e13022.
  • Jenni, N. L., Larkin, J. D., & Floresco, S. B. (2017). Prefrontal dopamine D1 and D2 receptors regulate dissociable aspects of decision making via distinct ventral striatal and amygdalar circuits. Journal of Neuroscience, 37(26), 6200–6213.
  • Jenni, N. L., Li, Y. T., & Floresco, S. B. (2021). Medial orbitofrontal cortex dopamine D1/D2 receptors differentially modulate distinct forms of probabilistic decision-making. Neuropsychopharmacology, 46(7), 1240–1251.
  • Kim, S. J., Kim, Y. S., Lee, H. S., Kim, S. Y., & Kim, C. H. (2006). An interaction between the serotonin transporter promoter region and dopamine transporter polymorphisms contributes to harm avoidance and reward dependence traits in normal healthy subjects. Journal of Neural Transmission, 113, 877–886.
  • Kobayashi, S., Asano, K., Matsuda, N., & Ugawa, Y. (2019). Dopaminergic influences on risk preferences of Parkinson’s disease patients. Cognitive, Affective, & Behavioral Neuroscience, 19, 88–97.
  • Kohno, M., Nurmi, E. L., Laughlin, C. P., Morales, A. M., Gail, E. H., Hellemann, G. S., & London, E. D. (2016). Functional genetic variation in dopamine signaling moderates prefrontal cortical activity during risky decision making. Neuropsychopharmacology, 41(3), 695–703.
  • Kuhnen, C. M., & Chiao, J. Y. (2009). Genetic determinants of financial risk taking. PloS ONE, 4(2), e4362. Kurniawan, I. T., Guitart-Masip, M., & Dolan, R. J. (2011). Dopamine and effort-based decision making. Frontiers in Neuroscience, 5, 9616.
  • Lewis, M. D. (2011). Dopamine and the neural “now”: Essay and review of Addiction: A disorder of choice. Perspectives on Psychological Science, 6(2), 150–155.
  • Li, S. C., Biele, G., Mohr, P. N., & Heekeren, H. R. (2007). Aging and neuroeconomics: Insights from research on neuromodulation of reward-based decision making. Analyse & Kritik, 29(1), 97–111.
  • Mai, B., Sommer, S., & Hauber, W. (2012). Motivational states influence effort-based decision making in rats: The role of dopamine in the nucleus accumbens. Cognitive, Affective, & Behavioral Neuroscience, 12, 74–84.
  • Matas-Navarro, P., Carratalá-Ros, C., Olivares-García, R., Martínez-Verdú, A., Salamone, J. D., & Correa, M. (2023). Sex and age differences in mice models of effort-based decision-making and anergia in depression: The role of dopamine, and cerebral-dopamine-neurotrophic-factor. Psychopharmacology, 240(11), 2285–2302.
  • Messias, J. P., Paula, J. R., Grutter, A. S., Bshary, R., & Soares, M. C. (2016). Dopamine disruption increases negotiation for cooperative interactions in a fish. Scientific Reports, 6(1), 20817.
  • Miendlarzewska, E. A., Kometer, M., & Preuschoff, K. (2017). Neurofinance. In Neuroscience in Organizational Research (Vol. 1, pp. 27–47).
  • Mitchell, M. R., Weiss, V. G., Beas, B. S., Bizon, J. L., & Setlow, B. (2014). Adolescent risk taking, cocaine self-administration, and striatal dopamine signaling. Neuropsychopharmacology, 39(4), 955–962.
  • Mohebi, A., Pettibone, J. R., Hamid, A. A., Wong, J. M., Vinson, L. T., Patriarchi, T., ... Berke, J. D. (2019). Dissociable dopamine dynamics for learning and motivation. Nature, 570(7759), 65–70.
  • Mott, A. M., Nunes, E. J., Collins, L. E., Port, R. G., Sink, K. S., Hockemeyer, J., ... Salamone, J. D. (2009). The adenosine A2A antagonist MSX-3 reverses the effects of the dopamine antagonist haloperidol on effort-related decision making in a T-maze cost/benefit procedure. Psychopharmacology, 204, 103–112.
  • Nasrallah, N. A., Clark, J. J., Collins, A. L., Akers, C. A., Phillips, P. E., & Bernstein, I. L. (2011). Risk preference following adolescent alcohol use is associated with corrupted encoding of costs but not rewards by mesolimbic dopamine. Proceedings of the National Academy of Sciences, 108(13), 5466–5471.
  • Nicola, S. M., Surmeier, D. J., & Malenka, R. C. (2000). Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annual Review of Neuroscience, 23(1), 185–215.
  • Niv, Y. (2007). Cost, benefit, tonic, phasic: What do response rates tell us about dopamine and motivation? Annals of the New York Academy of Sciences, 1104(1), 357–376.
  • Onge, J. R., Ahn, S., Phillips, A. G., & Floresco, S. B. (2012). Dynamic fluctuations in dopamine efflux in the prefrontal cortex and nucleus accumbens during risk-based decision making. Journal of Neuroscience, 32(47), 16880–16891.
  • Ortiz-Teran, E., Diez, I., Sepulcre, J., Lopez-Pascual, J., & Ortiz, T. (2021). Connectivity adaptations in dopaminergic systems define the brain maturity of investors. Scientific Reports, 11(1), 11671.
  • Oswald, L. M., Wand, G. S., Wong, D. F., Brown, C. H., Kuwabara, H., & Brašić, J. R. (2015). Risky decision-making and ventral striatal dopamine responses to amphetamine: A positron emission tomography [11C]raclopride study in healthy adults. NeuroImage, 113, 26–36.
  • Pes, R., Godar, S. C., Fox, A. T., Burgeno, L. M., Strathman, H. J., Jarmolowicz, D. P., ... Bortolato, M. (2017). Pramipexole enhances disadvantageous decision-making: Lack of relation to changes in phasic dopamine release. Neuropharmacology, 114, 77–87.
  • Peters, J., Vega, T., Weinstein, D., Mitchell, J., & Kayser, A. (2020). Dopamine and risky decision-making in gambling disorder. eNeuro, 7(3), 1–13.
  • Peterson, R. L. (2007). Inside the Investor's Brain: The Power of Mind Over Money. Hoboken, NJ: John Wiley & Sons. Rajan, R., Krishnan, S., Sarma, G., Sarma, S. P., & Kishore, A. (2018). Dopamine receptor D3 rs6280 is associated with aberrant decision‐making in Parkinson's disease. Movement Disorders Clinical Practice, 5(4), 413–416.
  • Reuter, M., Felten, A., Penz, S., Mainzer, A., Markett, S., & Montag, C. (2013). The influence of dopaminergic gene variants on decision making in the ultimatum game. Frontiers in Human Neuroscience, 7, 242.
  • Roe, B. E., Tilley, M. R., Gu, H. H., Beversdorf, D. Q., Sadee, W., Haab, T. C., & Papp, A. C. (2009). Financial and psychological risk attitudes associated with two single nucleotide polymorphisms in the nicotine receptor (CHRNA4) gene. PLoS ONE, 4(8), e6704.
  • Sáez, I., Zhu, L., Set, E., Kayser, A., & Hsu, M. (2015). Dopamine modulates egalitarian behavior in humans. Current Biology, 25(7), 912–919.
  • Salamone, J. D., Correa, M., Mingote, S. M., Weber, S. M., & Farrar, A. M. (2006). Nucleus accumbens dopamine and the forebrain circuitry involved in behavioral activation and effort-related decision making: Implications for understanding anergia and psychomotor slowing in depression. Current Psychiatry Reviews, 2(2), 267–280.
  • Salamone, J. D., Correa, M., Nunes, E. J., Randall, P. A., & Pardo, M. (2012). The behavioral pharmacology of effort‐related choice behavior: Dopamine, adenosine and beyond. Journal of the Experimental Analysis of Behavior, 97(1), 125–146.
  • Salamone, J. D., Correa, M., Yang, J. H., Rotolo, R., & Presby, R. (2018). Dopamine, effort-based choice, and behavioral economics: Basic and translational research. Frontiers in Behavioral Neuroscience, 12, 52.
  • Schindler, A. G., Soden, M. E., Zweifel, L. S., & Clark, J. J. (2016). Reversal of alcohol-induced dysregulation in dopamine network dynamics may rescue maladaptive decision-making. Journal of Neuroscience, 36(13), 3698–3708.
  • Schlösser, R. G., Nenadic, I., Wagner, G., Zysset, S., Koch, K., & Sauer, H. (2009). Dopaminergic modulation of brain systems subserving decision making under uncertainty: A study with fMRI and methylphenidate challenge. Synapse, 63(5), 429–442.
  • Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80(1), 1–27.
  • Schultz, W. (2007b). Behavioral dopamine signals. Trends in Neurosciences, 30(5), 203–210.
  • Schultz, W. (2010). Dopamine signals for reward value and risk: Basic and recent data. Behavioral and Brain Functions, 6, 1–9.
  • Schultz, W. (2016). Dopamine reward prediction error coding. Dialogues in Clinical Neuroscience, 18(1), 23–32.
  • Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–1599.
  • Siju, K. P., De Backer, J. F., & Grunwald Kadow, I. C. (2021). Dopamine modulation of sensory processing and adaptive behavior in flies. Cell and Tissue Research, 383(1), 207–225.
  • Simon, N. W., Vokes, C. M., Taylor, A. B., Haberman, R. P., Bizon, J. L., & Setlow, B. (2011). Dopaminergic modulation of risky decision-making. Journal of Neuroscience, 31(48), 17460–17470.
  • Smith, D. V., & Huettel, S. A. (2010). Decision neuroscience: Neuroeconomics. Wiley Interdisciplinary Reviews: Cognitive Science, 1(6), 854–871.
  • Soutschek, A., Jetter, A., & Tobler, P. N. (2023). Toward a unifying account of dopamine’s role in cost-benefit decision making. Biological Psychiatry Global Open Science, 3(2), 179–186.
  • St Onge, J. R., & Floresco, S. B. (2009). Dopaminergic modulation of risk-based decision making. Neuropsychopharmacology, 34(3), 681–697.
  • Stopper, C. M., Khayambashi, S., & Floresco, S. B. (2013). Receptor-specific modulation of risk-based decision making by nucleus accumbens dopamine. Neuropsychopharmacology, 38(5), 715–728.
  • Takahashi, T. (2011). Biophysics of risk aversion based on neurotransmitter receptor theory. arXiv preprint arXiv:1107.0777. https://arxiv.org/abs/1107.0777
  • Torta, D. M., Castelli, L., Zibetti, M., Lopiano, L., & Geminiani, G. (2009). On the role of dopamine replacement therapy in decision-making, working memory, and reward in Parkinson’s disease: Does the therapy-dose matter? Brain and Cognition, 71(2), 84–91.
  • van Enkhuizen, J., Henry, B. L., Minassian, A., Perry, W., Milienne-Petiot, M., Higa, K. K., ... & Young, J. W. (2014). Reduced dopamine transporter functioning induces high-reward risk-preference consistent with bipolar disorder. Neuropsychopharmacology, 39(13), 3112–3122.
  • van Gaalen, M. M., van Koten, R., Schoffelmeer, A. N., & Vanderschuren, L. J. (2006). Critical involvement of dopaminergic neurotransmission in impulsive decision making. Biological Psychiatry, 60(1), 66–73.
  • Verharen, J. P., Adan, R. A., & Vanderschuren, L. J. (2019). Differential contributions of striatal dopamine D1 and D2 receptors to component processes of value-based decision making. Neuropsychopharmacology, 44(13), 2195–2204.
  • Volkow, N. D., Wang, G. J., Fowler, J. S., Tomasi, D., & Telang, F. (2011). Addiction: Beyond dopamine reward circuitry. Proceedings of the National Academy of Sciences, 108(37), 15037–15042.
  • Voon, V., Gao, J., Brezing, C., Symmonds, M., Ekanayake, V., Fernandez, H., ... & Hallett, M. (2011). Dopamine agonists and risk: Impulse control disorders in Parkinson’s disease. Brain, 134(5), 1438–1446.
  • Wang, S., Hu, S. H., Shi, Y., & Li, B. M. (2017). The roles of the anterior cingulate cortex and its dopamine receptors in self-paced cost–benefit decision making in rats. Learning & Behavior, 45, 89–99. Westbrook, A., & Braver, T. S. (2016). Dopamine does double duty in motivating cognitive effort. Neuron, 89(4), 695–710. Westbrook, A., & Frank, M. (2018). Dopamine and proximity in motivation and cognitive control. Current Opinion in Behavioral Sciences, 22, 28–34.
  • Wheeler, A. R., Truckenbrod, L. M., Boehnke, A., Kahanek, P., & Orsini, C. A. (2024). Sex differences in sensitivity to dopamine receptor manipulations of risk-based decision making in rats. Neuropsychopharmacology, 49(13), 1978–1988.
  • Wise, R. A., & Robble, M. A. (2020). Dopamine and addiction. Annual Review of Psychology, 71(1), 79–106. Wunderlich, K., Smittenaar, P., & Dolan, R. J. (2012). Dopamine enhances model-based over model-free choice behavior. Neuron, 75(3), 418–424.
  • Yacubian, J., Sommer, T., Schroeder, K., Gläscher, J., Kalisch, R., Leuenberger, B., ... & Büchel, C. (2007). Gene–gene interaction associated with neural reward sensitivity. Proceedings of the National Academy of Sciences, 104(19), 8125–8130.
  • Yaman, B. (2023). Perspective chapter: The role of dopamine receptors in neuropsychiatric diseases. In Parkinson’s Disease—Animal Models, Current Therapies and Clinical Trials. IntechOpen.
  • Yang, J. H., Correa, M., & Salamone, J. D. (2020). The dopamine depleting agent tetrabenazine alters effort-related decision making as assessed by mouse touchscreen procedures. Psychopharmacology, 237, 2845–2854.
  • Yang, J. H., Presby, R. E., Jarvie, A. A., Rotolo, R. A., Fitch, R. H., Correa, M., & Salamone, J. D. (2020). Pharmacological studies of effort-related decision making using mouse touchscreen procedures: Effects of dopamine antagonism do not resemble reinforcer devaluation by removal of food restriction. Psychopharmacology, 237, 33–43.
  • Zald, D. H., & Treadway, M. T. (2017). Reward processing, neuroeconomics, and psychopathology. Annual Review of Clinical Psychology, 13(1), 471–495.
  • Zhong, S., Israel, S., Shalev, I., Xue, H., Ebstein, R. P., & Chew, S. H. (2010). Dopamine D4 receptor gene associated with fairness preference in ultimatum game. PLoS ONE, 5(11), e13765.
  • Zorick, T., Okita, K., Renard, K. B., Mandelkern, M. A., Brody, A. L., & London, E. D. (2022). The effects of citalopram and thalamic dopamine D2/3 receptor availability on decision‐making and loss aversion in alcohol dependence. Psychiatry Journal, 2022(1), 5663274.
Toplam 110 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İşletme
Bölüm Derleme
Yazarlar

Yusuf Polat 0000-0002-2255-0658

Gönderilme Tarihi 29 Mayıs 2025
Kabul Tarihi 3 Ekim 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 17 Sayı: 4

Kaynak Göster

APA Polat, Y. (2025). Biochemical Basis of Dopamine and Its Role in Neurofinancial Decision Making. Aksaray Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 17(4), 263-276. https://doi.org/10.52791/aksarayiibd.1708701