Research Article
BibTex RIS Cite

Finansal Zaman Serilerinin Fraktal Analizi

Year 2017, Volume: 9 Issue: 4, 49 - 54, 30.11.2017

Abstract








Bu çalışmanın amacı, Türkiye’de 2007 ile 2017 yılları arasındaki günlük verileri kullanılarak Borsa İstanbul
indeksi (BİST100) ve Altın Ons fiyatlarını R/S, V/S ve Periodogramanalizi kullanılarakHurst üstelini hesap
-
lamaktır.Zaman serilerindeki uzun dönemli bellek yapısını belirlemek için dönüştürülmüş genişlik (R/S), dö-
nüştürülmüş varyans (V/S) ve yarı parametrik nitelikteki periodogram analizi geliştirilerek Hurst üsteli tah-
min edilmiştir. Çalışmada BİST100 indeksi günlük getiri değerleri ve Altın ons fiyatlarını tahmin etmek için,
R istatistik paket programı kullanılmıştır. Hurst üsteli tahmin sonuçları, BİST100 indeksi ve Altın Ons fiyatları
serilerinin uzun dönemli bellek yapısı taşıdığı gözlemlenmiştir 




References

  • Anderson N. ve Noss J.(2013).TheFractal Market Hypothesisand Its Implicationsforthe Stability of Financial Markets’, Bank of England, Financial Sta- bilityPaper No. 23, August, ss.1-22.
  • Bachelier, L. (1964). TheTheory of Speculation, P. Cootner (der),Random Character of Stock Market Prices içinde, Cambridge, MA, M.I.TPress.
  • Brown, Clifford T. ve Larry S. Liebovitch (2010). Fractal Analysis, Quantitative Applications in the- SocialSciences, Monograph No. 165. ThousandO- aks, Calif.:Sage Publications.
  • Cano J.C. ve Manzoni P.(2000), On The Use Calcu- lationof the Hurst Parameter with MPEG Videos Data Traffic, Proceedings of the 26th Euromicro Conference. EUROMICRO 2000. Informatics: In- ventingthe Future, ss.448-455.
  • Cajueiro, D.O. ve Tabak, B.M. (2006). The Long-Range Dependence Phenomena in AssetRe- turns: The Chinese Case. Applied Economics Let- ters, 13, ss. 131-133.
  • Demireli E. ve Ural M.(2009). Hurst Üstel Katsayısı Aracılığıyla Fraktal Yapı Analizi ve İMKB’de Bir Uygulama, Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, Cilt: 23, Sayı: 2, ss.243-255.
  • Fama, E. F. (1970), Efficient Capital Markets: A Re- view of Theoryand Empirical Work, Journal of Fi- nance, Vol. 25, No. 2, ss. 383-417. Geweke, J. ve Porter-Hudak, S. (1983). The Esti- mationand Application of Long Memory Time SeriesModels. Journal of Time Series Analysis 4, ss.221-238
  • Günay, S.(2014). Yapısal Kırılmalar Dahilinde BİST-100 Endeksi Volatilitesinin Uzun Dönemli
  • Namık Kemal ERDOĞAN / Finansal Zaman Serilerinin Fraktal Analizi Bellek Analizi ,Journal of Yasar University, 2014 9(36), ss.6261-6380.
  • Giraitis, L.,Kokoszka,P., Leipus, R. veTeyssiere, G. (2003). RescaledVarianceandRelatedTestsforLong Memory in VolatilityandLevels, Journal of Econo- metrics 112, ss. 265 – 294.
  • Hurst, H.E. (1951). Long-term Storage Capacity of Reservoirs, Transactions of theAmericanSociety of CivilEngineers, 116, ss.770-808
  • Mandelbrot, B. B. (1963).TheVariation of CertainS- peculativePrices, TheJournal of Business, Vol. 36, No. 4, ss. 394-419
  • Mandelbrot, B. B. (1977).Fractals, Encyclopedia of Statistical Sciences, John Wiley&Sons, Inc.
  • Mandelbrot, B. B. ve Hudson, R.L.(2005). Finans Pi- yasalarında Saklı Düzen / Risk, Çöküş ve Kazanca Fraktal Yaklaşımlar (Çeviren:Metin Hüner), Gün- cel Yayıncılık, Şişli / İstanbul.
  • Peters, Edgar E. (1996). Chaos and Order in the Ca- pital Markets: A New View of Cycles, Prices, and Market Volatility, 2nd Edition, John Wiley&Sons, Australia.
  • R Core Team (2015). R: A Language and Environ- ment For Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, URL htt- ps://www.R-project.org/

Fractal Analysis of Financial Time Series

Year 2017, Volume: 9 Issue: 4, 49 - 54, 30.11.2017

Abstract








The aim of this study is to calculate the Hurstexponent by using R / S, V / S and Periodogram analysis for Bor-
sa Istanbul index(BIST100) and Gold Ounceprices in Turkey for the daily period of 2007-2017. Hurstexponent
is estimated by developing transformedwidth (R/S), transformed variance (V/S) and semi-parametric perio
-
dogram analysis in order to determine the structure of long-termmemory in time series. In this study, forthe
estimation of daily BIST100 index returnvalues and gold ounce prices, the R statistical software program are
used. Hurstexponent estimation results hows that the daily series of BIST100 index and Gold Ons prices have
long-term memory structure 




References

  • Anderson N. ve Noss J.(2013).TheFractal Market Hypothesisand Its Implicationsforthe Stability of Financial Markets’, Bank of England, Financial Sta- bilityPaper No. 23, August, ss.1-22.
  • Bachelier, L. (1964). TheTheory of Speculation, P. Cootner (der),Random Character of Stock Market Prices içinde, Cambridge, MA, M.I.TPress.
  • Brown, Clifford T. ve Larry S. Liebovitch (2010). Fractal Analysis, Quantitative Applications in the- SocialSciences, Monograph No. 165. ThousandO- aks, Calif.:Sage Publications.
  • Cano J.C. ve Manzoni P.(2000), On The Use Calcu- lationof the Hurst Parameter with MPEG Videos Data Traffic, Proceedings of the 26th Euromicro Conference. EUROMICRO 2000. Informatics: In- ventingthe Future, ss.448-455.
  • Cajueiro, D.O. ve Tabak, B.M. (2006). The Long-Range Dependence Phenomena in AssetRe- turns: The Chinese Case. Applied Economics Let- ters, 13, ss. 131-133.
  • Demireli E. ve Ural M.(2009). Hurst Üstel Katsayısı Aracılığıyla Fraktal Yapı Analizi ve İMKB’de Bir Uygulama, Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, Cilt: 23, Sayı: 2, ss.243-255.
  • Fama, E. F. (1970), Efficient Capital Markets: A Re- view of Theoryand Empirical Work, Journal of Fi- nance, Vol. 25, No. 2, ss. 383-417. Geweke, J. ve Porter-Hudak, S. (1983). The Esti- mationand Application of Long Memory Time SeriesModels. Journal of Time Series Analysis 4, ss.221-238
  • Günay, S.(2014). Yapısal Kırılmalar Dahilinde BİST-100 Endeksi Volatilitesinin Uzun Dönemli
  • Namık Kemal ERDOĞAN / Finansal Zaman Serilerinin Fraktal Analizi Bellek Analizi ,Journal of Yasar University, 2014 9(36), ss.6261-6380.
  • Giraitis, L.,Kokoszka,P., Leipus, R. veTeyssiere, G. (2003). RescaledVarianceandRelatedTestsforLong Memory in VolatilityandLevels, Journal of Econo- metrics 112, ss. 265 – 294.
  • Hurst, H.E. (1951). Long-term Storage Capacity of Reservoirs, Transactions of theAmericanSociety of CivilEngineers, 116, ss.770-808
  • Mandelbrot, B. B. (1963).TheVariation of CertainS- peculativePrices, TheJournal of Business, Vol. 36, No. 4, ss. 394-419
  • Mandelbrot, B. B. (1977).Fractals, Encyclopedia of Statistical Sciences, John Wiley&Sons, Inc.
  • Mandelbrot, B. B. ve Hudson, R.L.(2005). Finans Pi- yasalarında Saklı Düzen / Risk, Çöküş ve Kazanca Fraktal Yaklaşımlar (Çeviren:Metin Hüner), Gün- cel Yayıncılık, Şişli / İstanbul.
  • Peters, Edgar E. (1996). Chaos and Order in the Ca- pital Markets: A New View of Cycles, Prices, and Market Volatility, 2nd Edition, John Wiley&Sons, Australia.
  • R Core Team (2015). R: A Language and Environ- ment For Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, URL htt- ps://www.R-project.org/
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Business Administration
Journal Section Review Article
Authors

Namık Kemal Erdoğan

Publication Date November 30, 2017
Published in Issue Year 2017Volume: 9 Issue: 4

Cite

APA Erdoğan, N. K. (2017). Finansal Zaman Serilerinin Fraktal Analizi. Aksaray Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, 9(4), 49-54.