Araştırma Makalesi
BibTex RIS Kaynak Göster

H2S ORTAMINDA TAVLANMIŞ ZnS VE Mo-KATKILI ZnS NANOPARTİKÜLLERİNİN YAPISAL ÖZELLİKLERİNİN İNCELENMESİ

Yıl 2021, Cilt: 2 Sayı: 2, 26 - 31, 31.12.2021
https://doi.org/10.54559/jauist.1020502

Öz

Bu çalışmada, ardışık iyonik tabaka adsorpsiyon ve reaksiyon (SILAR) yöntemi ile oda sıcaklığında sentezlenen ve 550 oC'de H2S gazında 1 saat tavlanan Mo-katkılı ZnS nanoparçacıklarının (NP'ler) yapısal özellikleri incelenmiştir. XRD sonucu, ZnS ve Mo Katkılı ZnS NP'lerin kafes kübik yapıda olduğunu göstermektedir. NP'lerin ortalama kristal boyutu, Debye-Scherrer formülü kullanılarak hesaplandı. Saf ZnS NP'lerin kristal boyutu, doping ile değişti. ZnS ve Modifiye ZnS NP'lerin ortalama kristal boyutu sırasıyla 5.5 nm ve 4.3 nm olarak bulundu.

Kaynakça

  • 1. Kisslinger R., Hua W., Shankar K. 2017. Bulk heterojunction solar cells based on blends of conjugated polymers with II-VI and IV-VI inorganic semiconductor quantum dots, Polymers, 9 (2):35-63.
  • 2. Tongay S., Durgun E., Ciraci S. 2004. Atomic strings of group IV, III-V, and II-VI elements, Applied Physics Letters, 85(25):6179-6181.
  • 3. Chalana S.R., Bose R.J., Krishnan R.R., Kavitha V.S., Sreedharan R.S., Mahadevan Pillai V.P. 2016. Structural phase modification in Cu incorporated nanostructured zinc sulfide thin films, Journal of Physics and Chemistry of Solids, 95 (8): 24-36.
  • 4. Serrano J., Cantarero A., Cardona M., Garro N., Lauck R., Tallman R.E., Ritter T.M., Weinstein B.A. 2004. Raman scattering in ZnS, Physical Review B, 69 (14) 014301-014312.
  • 5. Kamat, P.V.,Christians, J.A., Radich, J.G. 2014. Quantum dot solar cells: hole transfer as a limiting factor in boosting the photoconversion efficiency. Langmuir, 30(20):5716– 5725.
  • 6. Chang, J.-Y., Su, L.-F., Li, C.-H., Chang, C.-C., Lin, J.-M. 2012. Efficient “green” quantum dot-sensitized solar cells based on Cu2S-CuInS2-ZnSe architecture, Chemical Communications, 48(40): 4848–4850.
  • 7. Hod, I.,Zaban, A. 2014. Materials and Interfaces in Quantum Dot Sensitized Solar Cells: Challenges, Advances and Prospects Langmuir, 30(25), 7264–7273.
  • 8. Jabeen U., Adhikari T., Shah S.M., Pathak D., Wagner T., J Nunzi.-M. 2017. Influence of. the dopant concentration on structural, optical and photovoltaic properties of Cu-. doped ZnS nanocrystals based bulk heterojunction hybrid solar cells, The European Physical Journal Applied Physics, 78 (3):34811-34816 9. Li Y., Zapien J., Shan Y., Liu Y., Lee S. 2006. Manganese doping and optical properties of ZnS nanoribbons by post annealing, Applied Physics Letters,88 (1) 013115.
  • 10. Peng W., Cong G., Qu S., Wang Z. 2006. Synthesis and photoluminescence of ZnS: Cu nanoparticles, Optical Materials, |29 (3) 313–317. 11. Pal M., Mathews N., Morales E.R., Jimenez J.G., Mathew X. 2013. Synthesis of Eu+3-doped ZnS nanoparticles by a wet chemical route and its characterization. Opt. Mater. 35 (14) 2664–2669.
  • 12. Naz H., Nauman A. R., Zhu X., Xiang B. 2018. Effect of Mo and Ti doping concentration on the structural and optical properties of ZnS nanoparticles, Physica E: Low-dimensional Systems and Nanostructures, 100 (6) 1–6
  • 13. Mote V. D., Purushotham Y., Dole B. N. 2013. Structural, morphological and optical properties of Mn doped ZnS nanocrystals, Ceramica, 59 (3) 395-400.
  • 14. Dhawale D.S.,Dubal D.P., Phadatare M.R., Patil J.S.,Lokhande C., (2011). Synthesis and characterizations of CdS nanorods by SILAR method: effect of film thickness, Journal of Materials Science, 46(14):5009–5015.
  • 15. Saikia D., Raland R., Borah J. 2016. Influence of Fe doping on the structural, optical and. magnetic properties of ZnS diluted magnetic semiconductor, Physica. E, Low-dimensional Systems & Nanostructures, 83 (4) 56–63.
  • 16. Khalkhali M., Liu Q.X., Zeng H.B., Zhang H. 2015. A size-dependent structural evolution of ZnS nanoparticles, Scientific Reports, 5 (1) 14267-14283.

INVESTIGATION OF STRUCTURAL PROPERTIES OF ZnS AND Mo-DOPED ZnS NANOPARTİCLES ANNEALED IN H2S MEDIUM

Yıl 2021, Cilt: 2 Sayı: 2, 26 - 31, 31.12.2021
https://doi.org/10.54559/jauist.1020502

Öz

In this study, the structural properties of Mo-doped ZnS nanoparticles (NPs), which were synthesized at room temperature using the successive ionic layer adsorption and reaction (SILAR) method and annealed in H2S gas for 1 hour at 550 oC, were investigated. The XRD result shows that ZnS and Mo Doped ZnS NPs are in lattice cubic structure. The average crystal size of NPs was calculated using the Debye − Scherrer formula. The crystal size of the pure ZnS NPs varied with doping. The average crystalline size of ZnS and Mo- doped ZnS NPs were found as 5.5nm nd 4.3 nm, respectively.

Kaynakça

  • 1. Kisslinger R., Hua W., Shankar K. 2017. Bulk heterojunction solar cells based on blends of conjugated polymers with II-VI and IV-VI inorganic semiconductor quantum dots, Polymers, 9 (2):35-63.
  • 2. Tongay S., Durgun E., Ciraci S. 2004. Atomic strings of group IV, III-V, and II-VI elements, Applied Physics Letters, 85(25):6179-6181.
  • 3. Chalana S.R., Bose R.J., Krishnan R.R., Kavitha V.S., Sreedharan R.S., Mahadevan Pillai V.P. 2016. Structural phase modification in Cu incorporated nanostructured zinc sulfide thin films, Journal of Physics and Chemistry of Solids, 95 (8): 24-36.
  • 4. Serrano J., Cantarero A., Cardona M., Garro N., Lauck R., Tallman R.E., Ritter T.M., Weinstein B.A. 2004. Raman scattering in ZnS, Physical Review B, 69 (14) 014301-014312.
  • 5. Kamat, P.V.,Christians, J.A., Radich, J.G. 2014. Quantum dot solar cells: hole transfer as a limiting factor in boosting the photoconversion efficiency. Langmuir, 30(20):5716– 5725.
  • 6. Chang, J.-Y., Su, L.-F., Li, C.-H., Chang, C.-C., Lin, J.-M. 2012. Efficient “green” quantum dot-sensitized solar cells based on Cu2S-CuInS2-ZnSe architecture, Chemical Communications, 48(40): 4848–4850.
  • 7. Hod, I.,Zaban, A. 2014. Materials and Interfaces in Quantum Dot Sensitized Solar Cells: Challenges, Advances and Prospects Langmuir, 30(25), 7264–7273.
  • 8. Jabeen U., Adhikari T., Shah S.M., Pathak D., Wagner T., J Nunzi.-M. 2017. Influence of. the dopant concentration on structural, optical and photovoltaic properties of Cu-. doped ZnS nanocrystals based bulk heterojunction hybrid solar cells, The European Physical Journal Applied Physics, 78 (3):34811-34816 9. Li Y., Zapien J., Shan Y., Liu Y., Lee S. 2006. Manganese doping and optical properties of ZnS nanoribbons by post annealing, Applied Physics Letters,88 (1) 013115.
  • 10. Peng W., Cong G., Qu S., Wang Z. 2006. Synthesis and photoluminescence of ZnS: Cu nanoparticles, Optical Materials, |29 (3) 313–317. 11. Pal M., Mathews N., Morales E.R., Jimenez J.G., Mathew X. 2013. Synthesis of Eu+3-doped ZnS nanoparticles by a wet chemical route and its characterization. Opt. Mater. 35 (14) 2664–2669.
  • 12. Naz H., Nauman A. R., Zhu X., Xiang B. 2018. Effect of Mo and Ti doping concentration on the structural and optical properties of ZnS nanoparticles, Physica E: Low-dimensional Systems and Nanostructures, 100 (6) 1–6
  • 13. Mote V. D., Purushotham Y., Dole B. N. 2013. Structural, morphological and optical properties of Mn doped ZnS nanocrystals, Ceramica, 59 (3) 395-400.
  • 14. Dhawale D.S.,Dubal D.P., Phadatare M.R., Patil J.S.,Lokhande C., (2011). Synthesis and characterizations of CdS nanorods by SILAR method: effect of film thickness, Journal of Materials Science, 46(14):5009–5015.
  • 15. Saikia D., Raland R., Borah J. 2016. Influence of Fe doping on the structural, optical and. magnetic properties of ZnS diluted magnetic semiconductor, Physica. E, Low-dimensional Systems & Nanostructures, 83 (4) 56–63.
  • 16. Khalkhali M., Liu Q.X., Zeng H.B., Zhang H. 2015. A size-dependent structural evolution of ZnS nanoparticles, Scientific Reports, 5 (1) 14267-14283.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Ömer Şahin

Sabit Horoz

Arzu Ekinci

Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 2 Sayı: 2

Kaynak Göster

APA Şahin, Ö., Horoz, S., & Ekinci, A. (2021). INVESTIGATION OF STRUCTURAL PROPERTIES OF ZnS AND Mo-DOPED ZnS NANOPARTİCLES ANNEALED IN H2S MEDIUM. Journal of Amasya University the Institute of Sciences and Technology, 2(2), 26-31. https://doi.org/10.54559/jauist.1020502
AMA Şahin Ö, Horoz S, Ekinci A. INVESTIGATION OF STRUCTURAL PROPERTIES OF ZnS AND Mo-DOPED ZnS NANOPARTİCLES ANNEALED IN H2S MEDIUM. J. Amasya Univ. Inst. Sci. Technol. Aralık 2021;2(2):26-31. doi:10.54559/jauist.1020502
Chicago Şahin, Ömer, Sabit Horoz, ve Arzu Ekinci. “INVESTIGATION OF STRUCTURAL PROPERTIES OF ZnS AND Mo-DOPED ZnS NANOPARTİCLES ANNEALED IN H2S MEDIUM”. Journal of Amasya University the Institute of Sciences and Technology 2, sy. 2 (Aralık 2021): 26-31. https://doi.org/10.54559/jauist.1020502.
EndNote Şahin Ö, Horoz S, Ekinci A (01 Aralık 2021) INVESTIGATION OF STRUCTURAL PROPERTIES OF ZnS AND Mo-DOPED ZnS NANOPARTİCLES ANNEALED IN H2S MEDIUM. Journal of Amasya University the Institute of Sciences and Technology 2 2 26–31.
IEEE Ö. Şahin, S. Horoz, ve A. Ekinci, “INVESTIGATION OF STRUCTURAL PROPERTIES OF ZnS AND Mo-DOPED ZnS NANOPARTİCLES ANNEALED IN H2S MEDIUM”, J. Amasya Univ. Inst. Sci. Technol., c. 2, sy. 2, ss. 26–31, 2021, doi: 10.54559/jauist.1020502.
ISNAD Şahin, Ömer vd. “INVESTIGATION OF STRUCTURAL PROPERTIES OF ZnS AND Mo-DOPED ZnS NANOPARTİCLES ANNEALED IN H2S MEDIUM”. Journal of Amasya University the Institute of Sciences and Technology 2/2 (Aralık 2021), 26-31. https://doi.org/10.54559/jauist.1020502.
JAMA Şahin Ö, Horoz S, Ekinci A. INVESTIGATION OF STRUCTURAL PROPERTIES OF ZnS AND Mo-DOPED ZnS NANOPARTİCLES ANNEALED IN H2S MEDIUM. J. Amasya Univ. Inst. Sci. Technol. 2021;2:26–31.
MLA Şahin, Ömer vd. “INVESTIGATION OF STRUCTURAL PROPERTIES OF ZnS AND Mo-DOPED ZnS NANOPARTİCLES ANNEALED IN H2S MEDIUM”. Journal of Amasya University the Institute of Sciences and Technology, c. 2, sy. 2, 2021, ss. 26-31, doi:10.54559/jauist.1020502.
Vancouver Şahin Ö, Horoz S, Ekinci A. INVESTIGATION OF STRUCTURAL PROPERTIES OF ZnS AND Mo-DOPED ZnS NANOPARTİCLES ANNEALED IN H2S MEDIUM. J. Amasya Univ. Inst. Sci. Technol. 2021;2(2):26-31.



Scilit 30442                               

Academindex 30443

SOBIAD 30444


29442 As of 2023, JAUIST is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).