Araştırma Makalesi
BibTex RIS Kaynak Göster

The activity of ceria supported complex in hydrogen generation

Yıl 2021, Cilt: 5 Sayı: 1, 26 - 32, 30.06.2021
https://doi.org/10.32571/ijct.755714

Öz

In this study, we studied the ceria supported Ni complex preparation and using it as a catalyst in NaBH4 hydrolysis for H2 production. NaBH4 hydrolysis system was studied in different parameters, as concentration of Ni complex, concentration of NaBH4, concentration of NaOH, amount of catalyst and temperature. Additionally, catalyst was characterized by several analysis methods. Finally, the kinetic calculation of NaBH4 hydrolysis reaction was studied at 20 ℃-50 ℃ the activation energy was found to be 27.581 kJ/mol. The aim of this study is to emphasize that ceria support can be used to increase the catalyst surface and to obtain the high hydrogen generation activity through hydrolysis of NaBH4. The experimental results show that ceria supported Ni complex was an effective catalyst in hydrolysis of NaBH4.

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • 1. Dillon, A.C.; Jones, K.M.; Bekkedahl, T.A.; Kiang, C.H.; Bethune, D.S.; Heben, M.J. Nature. 1997, 386, 377–379.
  • 2. Sahiner, N, Sengel, SB. Fuel Process Technol. 2017, 158, 1-8.
  • 3. Kaufman, C.M.; Sen, B. J. Chem. Soc. Dalton Trans. 1985, 307–313.
  • 4. Schlapbach, L.; Zuttel, A. Nature. 2001, 414, 353-8.
  • 5. Sahiner, N.; Yasar, A.O.; Aktas, N. J Ind Eng Chem. 2015, 23, 100-8.
  • 6. Kojima, Y.; Kawai, Y.; Nakanishi, H.; Matsumoto, S. Journal of Power Sources. 2004, 135, 36-41.
  • 7. Kilinc, D.; Saka, C.; Sahin, O. Journal of Power Sources. 2012, 217, 256-261.
  • 8. Ceyhan, A.A.; Edebali, S.; Fangaj, E. International Journal of Hydrogen Energy. 2020, article in press.
  • 9. İzgi, MS.; Baytar, O.; Şahin, O.; Horoz, S. Digest Journal of Nanomaterials and Biostructures. 2019, 14, 1005-1012.
  • 10. Kilinc, D.; Sahin O. International Journal of Hydrogen Energy. 2018, 43, 10717-10727.
  • 11. Kilinc, D. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2018, 40, 873-885.
  • 12. Iwasa, N.; Masuda, S.; Ogawa, N.; Takezawa, N. Appl. Catal. A Gen. 1995, 125, 145–157.
  • 13. Iwasa, N.; Mayanagi, T.; Nomura, W.; Arai, M.; Takezawa, N. Appl. Catal. A Gen. 2003, 248,153–160.
  • 14. Glisenti, A.; Galenda, A.; Natile, M.M. Appl. Catal. A Gen. 2013, 453, 102–112.
  • 15. Krajcí, M.; Tsai, A.P.; Hafner, J. J. Catal. 2015, 330, 6–18.
  • 16. Hernández, R.P.; Martínez, A.G.; Mayoral, A.; Deepak, F.L.; García, M.E.F.; Galicia, G.M.; Miki, M.; Yacamán, M.J. Adv. Mater. Res. 2010, 132, 205–219.
  • 17. Friedrich, M.; Teschner, D.; Gericke, A.K.; Armbrüster, M. J. Phys. Chem. C. 2012, 116, 14930–14935.
  • 18. Hannauer, J; Demirci, UB; Pastor, G; et al. Energy Environ Sci. 2010, 3, 1796.
  • 19. Larichev, YV; Netskina, OV; Komova, OV; et al. Int J Hydrogen Energy. 2010, 35, 6501-7.
  • 20. Kilinc D.; Sahin O.; Int J Hydrogen Energy. 2019, 44, 18858-18865.
  • 21. Xu, D; Zhao, L; Dai, P; et al. J Nat Gas Chem. 2012, 21, 488-94.
  • 22. Wu C; Williams PT. Appl Catal B Environ. 2009, 87, 152-61.
  • 23. Kilinc, D.; Sahin, O.; Int J Hydrogen Energy. 2019, 44, 28391-28401.
  • 24. Crisafulli, C; Scir, S; Salanitri, M; et al. Int J Hydrogen Energy. 2011, 36, 3817-26.
  • 25. Tian, H; Guo, Q; Xu D. J Power Sources. 2010, 195, 2136-42.
  • 26. Yan, K; Li, Y; Zhang, X; et al. Int J Hydrogen Energy. 2015, 40, 16137-16146.
  • 27. Kilinc, D. J. Baun Inst. Sci. Technol. 2018, 20, 296-310.
  • 28. Greluk, M.; Rotko, M.; Surdacka, ST. Renewable Energy. 2020,155, 378-395.
  • 29. Crisafulli, C; Scire, S; Zito, R; et al. Catal Lett. 2012, 142, 882-8.
  • 30. Levalley, T.L.; Richard, A.R.; Fan, M. Int. J. Hydrogen Energy. 2014, 39, 16983–17000.
  • 31. Ciambelli, P.; Palma, V.; Ruggiero, A. Appl. Catal. B Environ. 2010, 96, 18–27.
  • 32. Piedras, A.C.; Zamora, R. M.R.; Vázquez, B.C.A.; Martínez, A.G.; Galicia, G.M.; Anzures, F.M.; Hernández, R.P. Catalysis Today. 2020, Article in Press.
  • 33. Sahin, O.; Kilinc, D.; Saka, C. Journal of the Energy Institute. 2016, 89, 617-626.
  • 34. Chou, C.C.; Hsieh, C.H.; Chen, B.H. Energy. 2015, 50, 1973-1982.
  • 35. Guoa, S.; Wua, Q.; Sun, J.; Chen, T.; Feng, M.; Wang, Q.; Wang, Z.; Zhao, B.; Ding, D. Int. J. Hydrogen Energy. 2017, 42, 21063-21072.
  • 36. Wang, L.; Li, Z.; Zhang, P.; Wang, G.; Xie G. Int. J. Hydrogen Energy. 2016, 41, 1468-1476.
  • 37. Kilinc, D.; Sahin, O.; Saka, C. Int. J. Hydrogen Energy. 2017, 42, 20625-20637.
  • 38. Jadhav, A.R.; Bandal, H.A.; Kim H. Materials Letters. 2017, 198, 50-53.
Yıl 2021, Cilt: 5 Sayı: 1, 26 - 32, 30.06.2021
https://doi.org/10.32571/ijct.755714

Öz

Proje Numarası

-

Kaynakça

  • 1. Dillon, A.C.; Jones, K.M.; Bekkedahl, T.A.; Kiang, C.H.; Bethune, D.S.; Heben, M.J. Nature. 1997, 386, 377–379.
  • 2. Sahiner, N, Sengel, SB. Fuel Process Technol. 2017, 158, 1-8.
  • 3. Kaufman, C.M.; Sen, B. J. Chem. Soc. Dalton Trans. 1985, 307–313.
  • 4. Schlapbach, L.; Zuttel, A. Nature. 2001, 414, 353-8.
  • 5. Sahiner, N.; Yasar, A.O.; Aktas, N. J Ind Eng Chem. 2015, 23, 100-8.
  • 6. Kojima, Y.; Kawai, Y.; Nakanishi, H.; Matsumoto, S. Journal of Power Sources. 2004, 135, 36-41.
  • 7. Kilinc, D.; Saka, C.; Sahin, O. Journal of Power Sources. 2012, 217, 256-261.
  • 8. Ceyhan, A.A.; Edebali, S.; Fangaj, E. International Journal of Hydrogen Energy. 2020, article in press.
  • 9. İzgi, MS.; Baytar, O.; Şahin, O.; Horoz, S. Digest Journal of Nanomaterials and Biostructures. 2019, 14, 1005-1012.
  • 10. Kilinc, D.; Sahin O. International Journal of Hydrogen Energy. 2018, 43, 10717-10727.
  • 11. Kilinc, D. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2018, 40, 873-885.
  • 12. Iwasa, N.; Masuda, S.; Ogawa, N.; Takezawa, N. Appl. Catal. A Gen. 1995, 125, 145–157.
  • 13. Iwasa, N.; Mayanagi, T.; Nomura, W.; Arai, M.; Takezawa, N. Appl. Catal. A Gen. 2003, 248,153–160.
  • 14. Glisenti, A.; Galenda, A.; Natile, M.M. Appl. Catal. A Gen. 2013, 453, 102–112.
  • 15. Krajcí, M.; Tsai, A.P.; Hafner, J. J. Catal. 2015, 330, 6–18.
  • 16. Hernández, R.P.; Martínez, A.G.; Mayoral, A.; Deepak, F.L.; García, M.E.F.; Galicia, G.M.; Miki, M.; Yacamán, M.J. Adv. Mater. Res. 2010, 132, 205–219.
  • 17. Friedrich, M.; Teschner, D.; Gericke, A.K.; Armbrüster, M. J. Phys. Chem. C. 2012, 116, 14930–14935.
  • 18. Hannauer, J; Demirci, UB; Pastor, G; et al. Energy Environ Sci. 2010, 3, 1796.
  • 19. Larichev, YV; Netskina, OV; Komova, OV; et al. Int J Hydrogen Energy. 2010, 35, 6501-7.
  • 20. Kilinc D.; Sahin O.; Int J Hydrogen Energy. 2019, 44, 18858-18865.
  • 21. Xu, D; Zhao, L; Dai, P; et al. J Nat Gas Chem. 2012, 21, 488-94.
  • 22. Wu C; Williams PT. Appl Catal B Environ. 2009, 87, 152-61.
  • 23. Kilinc, D.; Sahin, O.; Int J Hydrogen Energy. 2019, 44, 28391-28401.
  • 24. Crisafulli, C; Scir, S; Salanitri, M; et al. Int J Hydrogen Energy. 2011, 36, 3817-26.
  • 25. Tian, H; Guo, Q; Xu D. J Power Sources. 2010, 195, 2136-42.
  • 26. Yan, K; Li, Y; Zhang, X; et al. Int J Hydrogen Energy. 2015, 40, 16137-16146.
  • 27. Kilinc, D. J. Baun Inst. Sci. Technol. 2018, 20, 296-310.
  • 28. Greluk, M.; Rotko, M.; Surdacka, ST. Renewable Energy. 2020,155, 378-395.
  • 29. Crisafulli, C; Scire, S; Zito, R; et al. Catal Lett. 2012, 142, 882-8.
  • 30. Levalley, T.L.; Richard, A.R.; Fan, M. Int. J. Hydrogen Energy. 2014, 39, 16983–17000.
  • 31. Ciambelli, P.; Palma, V.; Ruggiero, A. Appl. Catal. B Environ. 2010, 96, 18–27.
  • 32. Piedras, A.C.; Zamora, R. M.R.; Vázquez, B.C.A.; Martínez, A.G.; Galicia, G.M.; Anzures, F.M.; Hernández, R.P. Catalysis Today. 2020, Article in Press.
  • 33. Sahin, O.; Kilinc, D.; Saka, C. Journal of the Energy Institute. 2016, 89, 617-626.
  • 34. Chou, C.C.; Hsieh, C.H.; Chen, B.H. Energy. 2015, 50, 1973-1982.
  • 35. Guoa, S.; Wua, Q.; Sun, J.; Chen, T.; Feng, M.; Wang, Q.; Wang, Z.; Zhao, B.; Ding, D. Int. J. Hydrogen Energy. 2017, 42, 21063-21072.
  • 36. Wang, L.; Li, Z.; Zhang, P.; Wang, G.; Xie G. Int. J. Hydrogen Energy. 2016, 41, 1468-1476.
  • 37. Kilinc, D.; Sahin, O.; Saka, C. Int. J. Hydrogen Energy. 2017, 42, 20625-20637.
  • 38. Jadhav, A.R.; Bandal, H.A.; Kim H. Materials Letters. 2017, 198, 50-53.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Makale
Yazarlar

Dilek Kılınç 0000-0002-0171-2371

Ömer Şahin Bu kişi benim 0000-0003-4575-3762

Proje Numarası -
Yayımlanma Tarihi 30 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 5 Sayı: 1

Kaynak Göster

APA Kılınç, D., & Şahin, Ö. (2021). The activity of ceria supported complex in hydrogen generation. International Journal of Chemistry and Technology, 5(1), 26-32. https://doi.org/10.32571/ijct.755714
AMA Kılınç D, Şahin Ö. The activity of ceria supported complex in hydrogen generation. Int. J. Chem. Technol. Haziran 2021;5(1):26-32. doi:10.32571/ijct.755714
Chicago Kılınç, Dilek, ve Ömer Şahin. “The Activity of Ceria Supported Complex in Hydrogen Generation”. International Journal of Chemistry and Technology 5, sy. 1 (Haziran 2021): 26-32. https://doi.org/10.32571/ijct.755714.
EndNote Kılınç D, Şahin Ö (01 Haziran 2021) The activity of ceria supported complex in hydrogen generation. International Journal of Chemistry and Technology 5 1 26–32.
IEEE D. Kılınç ve Ö. Şahin, “The activity of ceria supported complex in hydrogen generation”, Int. J. Chem. Technol., c. 5, sy. 1, ss. 26–32, 2021, doi: 10.32571/ijct.755714.
ISNAD Kılınç, Dilek - Şahin, Ömer. “The Activity of Ceria Supported Complex in Hydrogen Generation”. International Journal of Chemistry and Technology 5/1 (Haziran 2021), 26-32. https://doi.org/10.32571/ijct.755714.
JAMA Kılınç D, Şahin Ö. The activity of ceria supported complex in hydrogen generation. Int. J. Chem. Technol. 2021;5:26–32.
MLA Kılınç, Dilek ve Ömer Şahin. “The Activity of Ceria Supported Complex in Hydrogen Generation”. International Journal of Chemistry and Technology, c. 5, sy. 1, 2021, ss. 26-32, doi:10.32571/ijct.755714.
Vancouver Kılınç D, Şahin Ö. The activity of ceria supported complex in hydrogen generation. Int. J. Chem. Technol. 2021;5(1):26-32.