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ABSTRACT  
Purpose- The estimation regarding to the exact daily price of the stock market index has always been a difficult task in the business sector. 

Therefore, there are numerous research studies carried out to predict the direction of stock price index movement.  

Methodology- Classical Markov chain model (MC) is commonly used for this prediction and it gives valuable signals about the movements 

of the closing returns of the stock market index. In this paper, we propose Markov Chain Model with Fuzzy States (MCFS) to predict the 

closing returns of Borsa Istanbul (BIST 100) index using triangular fuzzy numbers. We apply this method to hold the information while 

system moves between the extreme values of the states.  

Findings- With this study, we show that the use of MCFS for the selected period provides a higher forecasting accuracy to the investors 

compared to MC model. 

Conclusion-  Markov chains of the fuzzy states defines a stochastic system more precisely than the classical Markov chains and it gives 

more sensitive future prediction opportunities. It can be used for estimating returns of individual common stocks and also for the other 

investment instruments. 
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1. INTRODUCTION 

Decision Making has become the most important field for scientific, social and economic researchers. In a real world 
situations, decisions are made under the uncertain conditions and also in most applications we obtain the data by 
estimation or the experience which are imprecise and fuzzy. Therefore, decision- making problems can be described with 
fuzzy set theory more exactly than the classical crisp decision making theories. 

Stock Index, which is related to the changes in the stock prices, plays a significant role in the business sector for the 
performance valuation. Many factors might have an effect on the stock market index such as the political events, general 
economic conditions, trader’s expectations etc. Stock index prediction has been very interesting research topic for many 
years. Due to it’s complex, dynamic and highly non-linear data over time, it is a very difficult task to predict the exact daily 
price of the stock market index. The direction of the stock market index correlates with the movement of the price index. 
Estimating the direction significantly influences the decision of the financial traders about buying or selling an instrument. 
Hence, the stock index prediction can provide investors to gain profit in the stock exchange. 
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This paper is organized as follows: we provide literature rewiew and concept of the paper in Section 2. In Section 3, the data 
set, proposed methodology which is related to the fuzzy sets and  the Markov chain process of the fuzzy sets are given. In 
Section 4, findings and discussions about the stock return estimation with both MCFS and MC models are presented. Our 
conclusions are given in Section 5. 

2. LITERATURE REVIEW 

Recently, various estimating models have been presented and applied for the stock market analysis. Hidden Markov Model  
(Rabiner & Juang, 1993; Rabiner, 1993), widely implemented estimating models to estimate stock market data. Box and 
Jenkins (1976), used the Time series analysis to estimate and control. White (1988,1989) used Neural Networks to estimate 
stock market of IBM daily stock returns. Henry (1993), used ARIMA model to predict the daily close and morning open price. 
But these conventional methods are not useful when non linearity exists in time series. Chiang, Urban and Baldridge, 
(1996), have estimated the end-of-year net asset value of mutual funds via ANN model. Kim and Han (2000), showed there 
are complex dimensionality and buried noise at the stock market data so that makes it hard to reestimate the ANN 
parameters. Romahi and Shen (2000) showed that, ANN sometimes suffers from over fitting problem. They have evolved 
rule, which depends on expert system and generated a method to predict financial market behaviour. Later on, 
hybridization models have been used for estimating financial behaviour. All of these methods has required expert 
knowledge to deal with the aforementioned problems. Hassan and Nath (2005), used HMM for optimizing the system in a 
better way. Hassan, Nath and Kirley (2006), integrated HMM and fuzzy logic rules to evolve the prediction accuracy on non-
stationary stock data sets. Following this, Hassan, Nath and Kirley (2007), presented a fusion model of HMM, ANN and GA 
to estimate stock market. Badge (2012) used technical indicators as an input variable instead of stock prices for analysis. 
Gubta and Dhingra (2012) considered the fractional change in stock value and the intra-day high and low values of the stock 
to train the continuous HMM.  

In previous studies, several research work had been applied to different methods and algorithms for training the model to 
estimate the next day close value of the stock market, by considering randomly generated Transition Probability Matrix 
(TPM), Emission Probability Matrix (EPM) and prior probability matrix. 

Markov process is a stochastic model that has the Markov property. It can be used to model a random system, which 
changes its states according to the transition rule, which depends on the current state. Markov decision processes (MDPs) 
give mathematical framework for modeling the situations where outcomes are partly random and partly under the control 
of a decision maker. MDPs are commonly used for a wide range of optimization problems which are solved with dynamic 
programming and reinforcement learning. MDPs were known at least as early as the 1950s (Bellman, 1957). This method 
used in a wide range of disciplines, such as biology, medicine, social science, robotics, automated control, economics, 
and manufacturing. It has been studied well in the literature but this method relies on the states with sharp bounds which 
lead to counting the movements between extreme values of the states as the movements between average values of the 
states.  

In order to describe unclear situations mathematically, Zadeh defined fuzzy sets in 1965. After Zadeh’s work, Thomason 
(1977), introduced fuzzy matrix for the first time and Kruce, Buck-Emden and Cordes (1987) introduced the fuzzy Markov 
chain as a classical Markov chain based on fuzzy probabilities and used fuzzy sets to generate transition matrix of the 
uncertain datas in the Markov chain. Fuzzy Markov chain is demonstrated as the concept of fuzzy relation and its 
compositions (Sanchez, 1976). It can be used while the decision maker prefers subjective probabilities to model the 
uncertainties (Vajargah & Gharehdaghi, 2012). Yoshida (1994) generated a Markov fuzzy model with a transition possibility 
measures. Stow’ınski (1998), showed that we can use a fuzzy set representation in order to deal with uncertain data and 
flexible requirements. Avrachenkov and Sanchez (2000) analyzed fuzzy Markov chains and its properties in detail. 
Symeonaki and Stamou (2004), generated theory of the Markov system with fuzzy states and analyzed properties of the 
Markov model for uncertain boundaries. Kuranoa, Yasuda, Jakagami and Yoshida (2006), used fuzzy states to show fuzzy 
transition probabibilities. Salzenstein, Collet, Lecam and Hatt (2007), generated the dynamic fuzzy Markov chain model and 
compared with the static fuzzy Markov chain model. Pardo and Fuente (2010) used Markovian decision processes with 
fuzzy states to calculate the best policy to be implemented regarding publicity decisions in a queueing system. Zhou, Tang, 
Xie, Li and Zhang  (2013) used fuzzy probability-based Markov chain model to estimate regional long-term electric power 
demand.  

In order to deal with uncertain and complex nature of the stock market index movements we used MCFS to predict the 
movements of the closing returns of the BIST 100 index. For this aim, we have categorised closing returns for the BIST 100 
index datas as the 21 fuzzy states with the triangular fuzzy sets. Then we obtained Markov transition matrix of the fuzzy 
states. Finally, we have estimated next day closing return of the BIST 100 index by using Markov transition matrix of the 
fuzzy states and partition degrees of the present session state which is choosen randomly. 

 

https://en.wikipedia.org/wiki/Markov_property
https://en.wikipedia.org/wiki/Randomness#In_mathematics
https://en.wikipedia.org/wiki/Optimization_problem
https://en.wikipedia.org/wiki/Dynamic_programming
https://en.wikipedia.org/wiki/Dynamic_programming
https://en.wikipedia.org/wiki/Reinforcement_learning
https://en.wikipedia.org/wiki/Robotics
https://en.wikipedia.org/wiki/Automatic_control
https://en.wikipedia.org/wiki/Economics
https://en.wikipedia.org/wiki/Manufacturing
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3. DATA AND METHODOLOGY 

3.1. Sample  

The sample data cover approximately 3325 closing returns of the BIST 100 index between the period of Jan.02, 2003 and 
Mar.10, 2016. The data were obtained from the electronic data delivery system of the Borsa Istanbul. 

The closing returns 𝑅𝑡 were calculated as a percentage change of the BIST 100 index closing values 𝑃𝑡; 𝑅𝑡 = (𝑃𝑡 −
𝑃𝑡−1)/𝑃𝑡−1, where 𝑡 denotes the sessions (𝑡 = 2,3, . . . , 3325). The average return 𝜇𝑅 is approximately 0,08% and the 
standard deviation is 1,8% for the given period. The standard deviation is approximately 22 times higher than the expected 
return. Therefore the BIST 100 index return involves significant risk for the investors. 

3.2. Methodology 

An overview of the fuzzy sets  

Here, we give some necessary definitions about fuzzy set theory. 

Definition 1: A fuzzy set Ã in 𝐼𝑅 is a set of ordered pairs: 

Ã = {(𝑥, 𝜇Ã(𝑥))|𝑥 ∈ 𝐼𝑅} 

where 𝜇Ã ∶ 𝐼𝑅 → [0,1] and 𝜇Ã(𝑥) is called the membership function for the fuzzy set. 

Definition 2: A fuzzy number is a fuzzy set on the real line that satisfies the conditions of normality and convexity.  

Definition 3: A fuzzy number that represented with three points as follows: Ã = (𝑎1, 𝑎2, 𝑎3), (𝑎1 < 𝑎2 < 𝑎3) and whose 
membership function is given by 

𝜇Ã(𝑥) =

{
 
 

 
 
𝑥 − 𝑎1
𝑎2 − 𝑎1

,       𝑖𝑓𝑎1 ≤ 𝑥 ≤ 𝑎2

𝑎3 − 𝑥

𝑎3 − 𝑎2
,       𝑖𝑓𝑎2 ≤ 𝑥 ≤ 𝑎3

    0,                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

is called a triangular fuzzy number. 

Probabilities of Markov chains 

Let 𝑋𝑡  be the state of the system at time 𝑡. We assume that the transition probability matrix of a finite state Markov chain 𝑃 
is; 

𝑃 = [𝑝𝑖𝑗] ∀𝑖, 𝑗 = {0,1, … , 𝑁}, 

where  𝑝𝑖𝑗 denotes the transition probability from state 𝑖 to state 𝑗 (of one step) and  𝑝𝑖𝑗 ≥ 0 and for ∀𝑖, 𝑗: 

𝑝𝑖𝑗 = 𝑃{𝑋𝑡+1 = 𝑗|𝑋𝑡 = 𝑖} = 𝑃{𝑋1 = 𝑗|𝑋0 = 𝑖}, 

with ∑ 𝑝𝑖𝑗 = 1.
𝑁
𝑗=0   And the transition probability from state 𝑖 to state 𝑗 in r steps  𝑝𝑖𝑗

𝑟  is:  

𝑃𝑟 = [𝑝𝑖𝑗
𝑟 ]𝑝𝑖𝑗

𝑟 ≥ 0,   ∀𝑖, 𝑗 ∈ {0,1,… , 𝑁}, 

𝑝𝑖𝑗
𝑟 = 𝑃{𝑋𝑡+𝑟 = 𝑗|𝑋𝑡 = 𝑖} = 𝑃{𝑋𝑟 = 𝑗|𝑋0 = 𝑖}. 

And 

𝑃𝑟 = (𝑃)𝑟. 
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Markov chain process with fuzzy states 

It is very useful to define the problem with fuzzy states if there is not sufficient information about the system and also when 
the states of the system are known, but the number of the states are too large to make a decision (Pardo & Fuente, 2010). 

The most important difference between MC and MCFS depends on the values assumed for the variables. While in MCFS 
those values denote the fuzzy membership degrees, in MC they denote the probabilities. As a result, MCFS contains a 
possibilistic modeling of the problem, which is more flexible than the classical probabilistic approach with crisp states. 

Probabilities of Markov chain with fuzzy states 

Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} be a given set. A fuzzy partition of 𝑋 is a family of fuzzy subset of 𝑋, denoted by 𝐴 = {Ã1,
Ã2, … , Ã𝑁}, (∀𝑖 = {1,2,… . , 𝑁},       Ã𝑖 ≠ ∅ and Ã𝑖 ≠ 𝑋)with the corresponding membership functions 𝜇Ã1 , 𝜇Ã2 , … , 𝜇Ã𝑁 

which satisfy the following condition; 

∑ 𝜇Ã𝑖
𝑁
𝑖=1 (𝑥𝑟) = 1                                                                   (3)   

∀ 𝑥𝑟 ∈ 𝑋, and 𝑟 = {1,… , 𝑛}. 

The notion of fuzzy partition is used to define the fuzzy states for the Markovian decision process. 

Let {Ã1, Ã2, … , Ã𝑁} be a set of fuzzy states, as each fuzzy subset Ã𝑖 , 𝑖 ∈ {1, … . . , 𝑛} denotes a fuzzy state in the initial 
Markov chain.  

Definition 4: The probability of fuzzy initial state 𝑃(Ã𝑖) = 𝑃 (𝑋0 = Ã𝑖) is defined by using the probability of fuzzy event:  

𝑃(Ã𝑖) = 𝑃{𝑋̃0 = Ã𝑖} = ∑ 𝑃{𝑋0 = 𝑠}
𝑁
𝑠=0 𝜇Ã𝑖(𝑠)                                              (4) 

Definition 5: (Pardo & Fuente, 2010), The conditional probability of the fuzzy state Ã𝑗, given the initial state 𝑚, with 

𝑗 ∈ {1,… , 𝑛} and 𝑚 ∈ {0,… , 𝑁}, is: 

𝑃(Ã𝑗|𝑚) = 𝑃{𝑋̃1 = Ã𝑗|𝑋0 = 𝑚} = ∑ 𝑃{𝑋̃1 = Ã𝑗|𝑋0 = 𝑚}
𝑁
𝑠=0 𝜇Ã𝑗(𝑠)                    (5) 

and represents the transition probability to fuzzy state (of one step). 

Proposition 1: (Pardo & Fuente, 2010), The conditional probability of the fuzzy event Ã𝑗 given the fuzzy event Ã𝑖 , 𝑖, 𝑗 ∈

{1,… , 𝑛} is a function of a linear combination of probabilities 𝑃(Ã𝑗|𝑚), 𝑚 ∈ {0,… , 𝑁} as in equation: 

𝑃(Ã𝑗|Ã𝑖) = 𝑃{𝑋̃1 = Ã𝑗|𝑋̃0 = Ãİ} = ∑ 𝑃(Ã𝑗|𝑚)
𝑃{𝑋0=𝑚}𝜇Ã𝑖

(𝑚)

𝑃(Ã𝑖)
𝑁
𝑚=0                              (6) 

and represents the probability of transition from the fuzzy initial state to the fuzzy final state (of one step). 

The transition probability matrix of fuzzy states can be calculated by the equation (6). 

3.3. Methodology for Markov Chain Model 

Closing returns of the BIST 100 index are transformed into 21 discrete categorical states from high loss 𝑆−10 to the positive 
high return 𝑆10 according to functions below. For this aim, we defined the 𝑘 integer numbers which is based on 𝑅𝑡 as 

𝑘 − 1 <
𝑅𝑡+0.12%

0.24%
≤ 𝑘 where −2,28% < 𝑅𝑡 ≤ 2.28% and the k-th Markov states for 𝑘 ∈ {−9,… ,9} as followings: 

 

𝑆10 = {
1,       𝑖𝑓𝑅𝑡 > 2.28%
0,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑆𝑘 = {
1,
0,
     𝑖𝑓(2𝑘 − 1)0.12% < 𝑅𝑡 ≤ (2𝑘 + 1)0.12%

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

  𝑆−10 = {
1,             𝑖𝑓𝑅𝑡 ≤ −2.28%
0,                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Table 1: Transformed States of the Closing Returns for Some Days 

Date 𝑅𝑡 𝑆−10 𝑆−9 𝑆−8 𝑆−7 𝑆−6 𝑆−5 𝑆−4 𝑆−3 𝑆−2 𝑆−1 𝑆0 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10 

Mar.10, 2016 0.36% 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

Mar.09, 2016 1.36% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Mar.08, 2016 0.26% 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

Mar.07, 2016 0.38% 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

Mar.06, 2016 0.47% 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

Mar.03, 2016 0.05% 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

Mar.02, 2016 1.10% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

Mar.01, 2016 0.19% 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

Feb.29, 2016 1.18% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

Feb.26, 2016 -0.36% 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

Feb.25, 2016 1.53% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Feb.24, 2016 -1.90% 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

As it is shown in Table 1, we transformed 3325 closing returns of BIST 100 index to the defined 21 discrete states. Then,we 
calculated all transitions numbers of states from the present session to the next session for the period considered. We also 
used conditional probabilities of the Markov chain to obtain one step transition probability matrix which is shown in Table 
2. 

Table 2: One Step Conditional Probability Matrix 

 𝑆−10 𝑆−9 𝑆−8 𝑆−7 𝑆−6 𝑆−5 𝑆−4 𝑆−3 𝑆−2 𝑆−1 𝑆0 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10 
𝑆−10 .17 .03 .03 .04 .03 .02 .02 .04 .03 .04 .05 .04 .05 .05 .05 .03 .03 .04 .03 .03 .15 
𝑆−9 .13 .02 .08 .04 .13 .04 .02 .04 .00 .04 .08 .06 .06 .04 .02 .00 .06 .02 .04 .00 .10 
𝑆−8 .08 .00 .01 .03 .07 .05 .03 .07 .05 .07 .06 .07 .06 .02 .05 .08 .07 .01 .02 .01 .09 
𝑆−7 .11 .01 .02 .00 .05 .04 .00 .05 .11 .05 .01 .10 .08 .02 .07 .07 .02 .00 .04 .04 .12 
𝑆−6 .07 .03 .04 .05 .05 .02 .03 .05 .06 .05 .05 .09 .03 .07 .04 .03 .08 .04 .02 .02 .08 
𝑆−5 .06 .02 .02 .03 .02 .01 .03 .09 .06 .08 .02 .06 .06 .03 .10 .06 .06 .06 .02 .01 .12 
𝑆−4 .05 .03 .04 .03 .07 .03 .02 .08 .08 .05 .08 .06 .07 .04 .07 .05 .03 .02 .01 .01 .06 
𝑆−3 .08 .02 .04 .01 .01 .06 .03 .06 .04 .07 .11 .08 .07 .07 .02 .04 .05 .03 .02 .01 .07 
𝑆−2 .06 .00 .03 .03 .03 .05 .06 .05 .06 .03 .09 .05 .07 .06 .05 .06 .04 .03 .02 .03 .10 
𝑆−1 .06 .02 .02 .02 .03 .05 .05 .05 .07 .04 .08 .08 .07 .05 .04 .06 .04 .05 .02 .03 .07 
𝑆0 .05 .01 .03 .04 .04 .07 .04 .04 .07 .08 .06 .07 .04 .04 .06 .04 .04 .03 .03 .02 .11 
𝑆1 .05 .01 .03 .01 .05 .07 .04 .05 .08 .06 .08 .08 .07 .05 .05 .04 .03 .04 .02 .03 .05 
𝑆2 .06 .00 .02 .03 .02 .03 .05 .05 .05 .07 .06 .06 .08 .07 .06 .05 .06 .06 .04 .01 .07 
𝑆3 .11 .02 .03 .03 .03 .04 .03 .04 .06 .09 .05 .04 .05 .09 .05 .06 .06 .04 .02 .00 .08 
𝑆4 .07 .01 .02 .03 .05 .06 .05 .05 .06 .07 .07 .07 .08 .02 .05 .08 .05 .03 .02 .00 .05 
𝑆5 .05 .03 .02 .02 .05 .03 .05 .06 .07 .08 .10 .07 .12 .03 .04 .06 .02 .04 .01 .02 .03 
𝑆6 .04 .01 .02 .01 .05 .02 .05 .05 .10 .10 .08 .07 .06 .07 .04 .04 .01 .03 .04 .01 .07 
𝑆7 .06 .01 .03 .03 .03 .04 .03 .02 .06 .06 .07 .09 .09 .14 .05 .03 .03 .02 .03 .05 .06 
𝑆8 .03 .01 .01 .03 .08 .03 .04 .04 .05 .08 .14 .10 .04 .06 .04 .09 .08 .01 .00 .01 .06 
𝑆9 .07 .03 .02 .02 .03 .00 .02 .03 .16 .08 .05 .03 .10 .08 .08 .02 .02 .05 .03 .02 .07 
𝑆10 .09 .01 .02 .01 .03 .02 .05 .04 .07 .05 .04 .09 .05 .08 .05 .06 .03 .03 .04 .03 .15 

Lastly, we calculated the probability of next day closing return state 𝑝(𝑥𝑖) by multiplying present return state and the 

conditional transition matrix. We calculated the expected closing return 𝑅̂𝑡 for next day by using: 

𝑅̂𝑡 =∑𝑥𝑖  𝑝(𝑥𝑖)                                                                        (7)

𝑖

 

where 𝑥𝑖 denotes the middle points of the states for 𝑖 = −9, . . ,9 and the boundaries of the states for 𝑖 = −10, 10. 

3.4. Methodology for Markov Chain with Fuzzy States 

Closing returns of the BIST 100 index are transformed into 21 fuzzy states from the high loss𝑆−10 to high return 𝑆10 which is 
shown in Figure 1. We used triangular fuzzy numbers to obtain the membership degree of 𝑅𝑡 to the fuzzy states. 
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Figure 1: Fuzzy States for BIST 100 Index 

µ 

 

Let ⟦𝑥⟧ be the greatest integer function and 𝑅𝑡 is the closing return of BIST 100 index. We define fuzzy state components of 

the returns 𝑆̃𝑖 and 𝑆̃𝑖+1 as following: 

If  −2.25% < 𝑅𝑡 < 2.25% then 𝑖 = ⟦
𝑅𝑡

0.225
⟧  and 

𝑆̃𝑖 =
(𝑖+1)(0.225−𝑅𝑡)

0.225
, 𝑆̃𝑖+1 = 1 − 𝑆̃𝑖.                                        (8) 

If  𝑅𝑡 ≤ −2.25%  or  𝑅𝑡 ≥ 2.25%  then  𝑆̃−10 = 1 or 𝑆̃10 = 1  respectively. 

Therefore 𝑅𝑡 numbers are transformed to the triangular fuzzy numbers for the time considered. 
 

Table 3: Transformed Fuzzy States of the Closing Returns for Some Days 

Date 𝑅𝑡 𝑆̃−10 𝑆̃−9 𝑆̃−8 𝑆̃−7 𝑆̃−6 𝑆̃−5 𝑆̃−4 𝑆̃−3 𝑆̃−2 𝑆̃−1 𝑆̃0 𝑆̃1 𝑆̃2 𝑆̃3 𝑆̃4 𝑆̃5 𝑆̃6 𝑆̃7 𝑆̃8 𝑆̃9 𝑆̃10 

Mar.10, 2016 0.36% .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .40 .60 .00 .00 .00 .00 .00 .00 .00 .00 

Mar.09, 2016 1.36% .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .96 .04 .00 .00 .00 

Mar.08, 2016 0.26% .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .84 .16 .00 .00 .00 .00 .00 .00 .00 .00 

Mar.07, 2016 0.38% .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .31 .69 .00 .00 .00 .00 .00 .00 .00 .00 

Mar.06, 2016 0.47% .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .91 .09 .00 .00 .00 .00 .00 .00 .00 

Mar.03, 2016 0.05% .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .78 .22 .00 .00 .00 .00 .00 .00 .00 .00 .00 

Mar.02, 2016 1.10% .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .11 .89 .00 .00 .00 .00 .00 

Mar.01, 2016 0.19% .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .16 .84 .00 .00 .00 .00 .00 .00 .00 .00 .00 

Feb.29, 2016 1.18% .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .76 .24 .00 .00 .00 .00 

Feb.26, 2016 -0.36% .00 .00 .00 .00 .00 .00 .00 .00 .60 .40 .00 .00 .00 .00 .00 .00 0 .00 .00 .00 .00 

Feb.25, 2016 1.53% .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .20 .80 .00 .00 .00 

Feb.24, 2016 -1.90% .00 .44 .56 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

Within this framework, MCFS which depend on the fuzzy set theory provides more realistic description to the problems 

than the MC. Then we calculated the fuzzy transition probability by using the conditional probability of the fuzzy state 𝑆̃𝑗, 

given the fuzzy state 𝑆̃𝑖 . With this way, we replaced fuzzy transition probability with crisp transition probability. Then we 
obtained the probabilistic transition matrix of the fuzzy states by using equations (7) and (8).  
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Table 4: Probabilistic Transition Matrix of the Fuzzy States 

 𝑆̃−10 𝑆̃−9 𝑆̃−8 𝑆̃−7 𝑆̃−6 𝑆̃−5 𝑆̃−4 𝑆̃−3 𝑆̃−2 𝑆̃−1 𝑆̃0 𝑆̃1 𝑆̃2 𝑆̃3 𝑆̃4 𝑆̃5 𝑆̃6 𝑆̃7 𝑆̃8 𝑆̃9 𝑆̃10 
𝑆̃−10 .17 .03 .03 .04 .03 .02 .02 .04 .03 .04 .05 .04 .05 .05 .05 .03 .03 .04 .03 .03 .15 

𝑆̃−9 .12 .02 .03 .05 .08 .02 .06 .05 .02 .05 .04 .06 .04 .03 .04 .04 .05 .04 .00 .01 .10 

𝑆̃−8 .07 .00 .01 .04 .04 .02 .02 .05 .05 .08 .05 .09 .08 .04 .06 .07 .06 .03 .02 .03 .10 

𝑆̃−7 .09 .02 .02 .03 .05 .04 .02 .05 .07 .04 .03 .07 .05 .04 .04 .04 .05 .04 .04 .03 .13 

𝑆̃−6 .10 .02 .03 .04 .02 .02 .04 .07 .05 .05 .04 .06 .05 .06 .05 .04 .07 .04 .03 .02 .10 

𝑆̃−5 .07 .02 .03 .03 .02 .02 .04 .06 .08 .07 .04 .05 .07 .05 .07 .05 .07 .03 .03 .02 .12 

𝑆̃−4 .08 .04 .03 .02 .05 .04 .04 .06 .05 .06 .08 .06 .07 .04 .05 .04 .05 .03 .02 .01 .06 

𝑆̃−3 .09 .03 .02 .01 .03 .04 .04 .06 .04 .07 .08 .08 .07 .06 .04 .03 .04 .04 .02 .02 .08 

𝑆̃−2 .06 .02 .03 .02 .03 .05 .05 .05 .05 .04 .07 .06 .06 .07 .05 .04 .06 .03 .02 .03 .10 

𝑆̃−1 .07 .02 .02 .03 .03 .04 .04 .05 .07 .05 .06 .07 .07 .05 .05 .04 .04 .05 .03 .03 .09 

𝑆̃0 .06 .02 .03 .04 .05 .05 .04 .04 .06 .08 .06 .07 .04 .04 .05 .03 .04 .03 .04 .02 .11 

𝑆̃1 .06 .03 .02 .03 .05 .06 .04 .04 .07 .06 .07 .08 .06 .06 .06 .04 .04 .02 .03 .02 .08 

𝑆̃2 .06 .02 .02 .02 .03 .04 .05 .05 .05 .05 .06 .07 .07 .06 .06 .04 .05 .05 .04 .02 .07 

𝑆̃3 .09 .01 .03 .02 .03 .03 .03 .04 .07 .08 .05 .05 .06 .07 .06 .05 .05 .05 .03 .01 .09 

𝑆̃4 .10 .02 .03 .03 .04 .04 .05 .05 .05 .06 .07 .06 .07 .05 .04 .06 .05 .04 .02 .01 .06 

𝑆̃5 .07 .01 .02 .03 .05 .06 .05 .05 .05 .06 .09 .08 .09 .04 .02 .07 .04 .03 .02 .02 .05 

𝑆̃6 .08 .01 .02 .03 .04 .03 .04 .06 .07 .08 .11 .07 .08 .04 .03 .05 .03 .03 .03 .01 .06 

𝑆̃7 .05 .03 .03 .02 .04 .03 .04 .05 .07 .09 .06 .05 .06 .10 .06 .03 .02 .02 .03 .02 .10 

𝑆̃8 .03 .02 .02 .03 .05 .03 .02 .03 .05 .06 .09 .10 .09 .10 .08 .04 .05 .03 .02 .01 .06 

𝑆̃9 .06 .02 .01 .04 .04 .01 .02 .03 .08 .09 .11 .08 .05 .06 .05 .05 .06 .02 .02 .01 .09 

𝑆̃10 .10 .02 .01 .02 .03 .02 .04 .05 .07 .05 .04 .07 .06 .07 .05 .05 .04 .03 .03 .03 .14 

In Table 4, the closing returns are considered as a stochastic process with 21 fuzzy state space {𝑆̃−10, … , 𝑆̃10} with Markov 

chain structure. The conditional partition degree of passing from state 𝑆̃5 to 𝑆̃2 is 𝑃̃(𝑆̃2|𝑆̃5) = 9%.  

Lastly, we calculated next day closing returns partition degrees to the states 𝑝(𝑥𝑖), by multipliying present return partitions 

and the conditional transition matrix of the fuzzy states. And we calculated the expected closing return 𝑅̂𝑡 for next day by 
using equation (9). 

𝑅̂𝑡 = ∑ 𝑥𝑖𝑝(𝑥𝑖)𝑖 .                                                                 (9) 

Categories of the states and the conditional transition probability matrices are formulated and calculated in Excel by using 
Excel IF function. 

4. FINDINGS AND DISCUSSIONS 

The MCFS model gives information about risky days. When a daily return substantially increased (2,25% or greater), the 
next day’s return also substantially increased or decreased with the probability of 14% or 10% respectively. On the other 
hand, when a daily return substantially decreased (2,25% or greater), the next day’s return also substantially increased or 
decreased with the probability of 15% or 17% respectively. This result is not significiantly different from that of the MC 
model in Table 2. 

Table 5: Estimated Closing Return 𝑹̂𝒕with MC Model for Feb.12, 2016 

 𝑆−10 𝑆−9 𝑆−8 𝑆−7 𝑆−6 𝑆−5 𝑆−4 𝑆−3 𝑆−2 𝑆−1 𝑆0 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10 

𝑝(𝑥𝑖) 0.05 0.03 0.04 0.03 0.07 0.03 0.02 0.08 0.08 0.05 0.07 0.06 0.07 0.04 0.07 0.05 0.03 0.02 0.01 0.01 0.06 

𝑥𝑖 -2.40 -2.16 -1.92 -1.68 -1.44 -1.20 -0.96 -0.72 -0.48 -0.24 0.00 0.24 0.48 0.72 0.96 1.20 1.44 1.68 1.92 2.16 2.40 

𝑅̂𝑡 =-0.12% 

In Table 5, we have shown the probability of closing return 𝑝(𝑥𝑖) on Feb.12, 2016 with MC model and we computed the 

expected return 𝑅̂𝑡. 

 

 

 



Journal of Economics, Finance and Accounting – JEFA (2017), Vol.4(1),p.15-24                                                                 Kiral, Uzun 

_____________________________________________________________________________________________________ 
DOI: 10.17261/Pressacademia.2017.362                                      22 

 
 

Table 6: Estimated closing return 𝑹̂𝒕 with MCFS model for Feb.12, 2016 

 𝑆̃−10 𝑆̃−9 𝑆̃−8 𝑆̃−7 𝑆̃−6 𝑆̃−5 𝑆̃−4 𝑆̃−3 𝑆̃−2 𝑆̃−1 𝑆̃0 𝑆̃1 𝑆̃2 𝑆̃3 𝑆̃4 𝑆̃5 𝑆̃6 𝑆̃7 𝑆̃8 𝑆̃9 𝑆̃10 

𝑝(𝑥𝑖) 0.08 0.03 0.03 0.02 0.05 0.03 0.04 0.06 0.06 0.07 0.07 0.06 0.07 0.04 0.06 0.04 0.05 0.03 0.02 0.01 0.07 

𝑥𝑖 -2.25 -2.03 -1.80 -1.58 -1.35 -1.13 -0.90 -0.68 -0.45 -0.23 0.00 0.23 0.45 0.68 0.90 1.13 1.35 1.58 1.80 2.03 2.25 

𝑅̂𝑡 =-0.04% and the actual closing return 𝑅𝑡 = -0.01% on Feb.12, 2016. 

In Table 6, we have shown the probability of closing return 𝑝(𝑥𝑖) on Feb.12, 2016 with MCFS model and we computed the 

expected return 𝑅̂𝑡. 

Table 7: Estimated 𝑹𝒕 for Some Days 

Dates  𝑹̂𝒕with MC Model 𝑹̂𝒕with MCFS Model Actual (𝑹𝒕) 

Feb.12, 2016 -0.12% -0.04% -0.01% 

Jan.15, 2016 -0.08% -0.06% -0.52% 

Nov.11, 2015 -0.10% 0.15% 0.67% 

Nov.15, 2016 -0.08% 0.05% 0.98% 

MAE 0.60% 0.49%  

In Table 7, we have shown some estimation results for some days which are choosen randomly. And we used the mean 
absolute error MAE to measure how our prediction is close to the eventual outcomes.  

𝑀𝐴𝐸 =
1

𝑛
∑|𝑒𝑖|

𝑛

𝑖=1

 

where 𝑒𝑖 denotes the error. From Table 1, one can see that MCFS model is better than MC model for forecasting the stock 
market index. 

Validation test for the Markov model with fuzzy states 

To validate MCFS, a comparison is carried out between the expected and actual values of the BIST 100 returns. The test of 

𝜒(0.05)
2  was applied between expected and actual values to evaluate the 95% significance of the results. Test values have 

been calculated by 

      𝜒(0.05)
2 = ∑

(𝐴𝑉𝑖−𝐸𝑉𝑖)
2

𝐸𝑉𝑖

21
𝑖=1                                                (9) 

where 𝐸𝑉𝑖 and  𝐴𝑉𝑖  are the values estimated by the model and the actual values, respectively For each sample, the value of 
the chi-square (𝜒2)  statistic is calculated based on the null hypothesis 𝐻0. In this study, the degree of freedom is 20 (21 
categories–1). The critical value (CV) in the test with  95%  significance is  31.41. 

Table 8: Partition degrees of estimated closing returns 𝑹̂𝒕 and the actual return𝑹𝒕for Feb.12,2016 and Nov.11,2015 

Date Feb.12,2016                      

  𝑆̃−10 𝑆̃−9 𝑆̃−8 𝑆̃−7 𝑆̃−6 𝑆̃−5 𝑆̃−4 𝑆̃−3 𝑆̃−2 𝑆̃−1 𝑆̃0 𝑆̃1 𝑆̃2 𝑆̃3 𝑆̃4 𝑆̃5 𝑆̃6 𝑆̃7 𝑆̃8 𝑆̃9 𝑆̃10 

 𝑝(𝑥𝑖) .08 .03 .03 .02 .05 .03 .04 .06 .06 .07 .07 .06 .07 .04 .06 .04 .05 .03 .02 .01 .07 

Actual 
𝑅𝑡 

-0.01% .00 .00 .00 .00 .00 .00 .00 .00 .00 .04 .96 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 

 
Date 

 
Nov.11,2015 

                     

  𝑆̃−10 𝑆̃−9 𝑆̃−8 𝑆̃−7 𝑆̃−6 𝑆̃−5 𝑆̃−4 𝑆̃−3 𝑆̃−2 𝑆̃−1 𝑆̃0 𝑆̃1 𝑆̃2 𝑆̃3 𝑆̃4 𝑆̃5 𝑆̃6 𝑆̃7 𝑆̃8 𝑆̃9 𝑆̃10 

 𝑝(𝑥𝑖) .07 .02 .03 .03 .03 .02 .04 .06 .07 .07 .05 .05 .07 .04 .07 .04 .07 .03 .02 .01 .11 

Actual 
𝑅𝑡 

0.67% .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .02 .98 .00 .00 .00 .00 .00 .00 .00 
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The values of the 𝜒(0.05)
2  test are 11.8 on Feb.12, 2016 and 20.3 on Nov.11,2015 which are lower than 31.41 and also 𝜒(0.05)

2  

test values are lower than 31.41 for each sample. The results show that the MCFS model with the triangular fuzzy numbers 
is plausible. 

5. CONCLUSION 

We have predicted behaviour of the BIST 100 stock return index for next day using four days. Using the MC and MCFS 
models, forecasts of the daily stock returns are compared. The results give sensitive and significant information to the 
investors about investment opportunities of the BIST 100 index for the daily buying and selling strategies when the present 
return is known.  
 

In risky days, when a daily return substantially increased or decreased, the next day’s return also substantially increased or 
decreased for both models. The transition probabilities of daily returns in non-risky days would be significiantly lower than 
those in risky days for both models. 
 

The MCFS model can be used to forecast the returns for smaller time (less than one day) intervals which may give more 
investment opportunities. Inverstors can earn higher than the average return in risky days in a short run. Besides the MCFS 
model can be useful for estimating returns of individual common stocks and also for the other investment instruments. 
Finally, MCFS provided a higher forecasting accuracy to the investors compared to the MC model. 
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