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ABSTRACT 

Purpose: In this paper, the potential of mathematical optimization (MO) in enhancing innovation 

productivity is explored. Innovation is a process that converts new ideas and methods into products and 

services, MO can contribute to innovation management by improving productivity across all stages, from 

pre-innovation to post-innovation. This paper establishes a connection between MO and innovation 

productivity while demonstrating an application for a post-innovation phase problem of unmanned aerial 

vehicles (UAVs). 

Methodology: A framework for incorporating MO into the design problems of innovation processes is 

developed. Additionally, a MO model is developed for a case study concerning UAV border patrolling in 

Türkiye. 

Findings: Computational experiments demonstrate MO's effectiveness in optimizing UAV routes and 

strategies, enhancing operational efficiency, and innovation productivity. Optimal recommendations and 

trade-offs among different mission considerations are obtained in 18 minutes on average (with a median of 

5 seconds) over 210 runs. 

Originality: A link is established between MO and innovation productivity. An operations research problem 

is introduced for UAV operations in border patrolling in Türkiye. The codebase and data are openly provided 

for readers to apply the model in their research. 
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İnovasyon Verimliliğinde Matematiksel Optimizasyon: Bir Çerçeve ve Türkiye’de 
İHA Sınır Devriyesine İlişkin Bir Vaka Çalışması 

ÖZET 

Amaç: Bu makalede, matematiksel optimizasyonun (MO) inovasyon verimliliğini artırma potansiyeli 

incelenmektedir. İnavasyon, yeni fikirleri ve yöntemleri ürün ve hizmetlere dönüştüren bir süreçtir. MO, 

inovasyon yönetimine verimliliği artırarak katkıda bulunabilir; bu, inovasyon öncesinden sonrasına kadar 

inovasyon sürecinin tüm aşamalarında geçerlidir. Bu makale, MO ve inovasyon verimliliği arasında bir 

bağlantı kurarken, insansız hava araçlarının (İHA'ların) inovasyon sonrası aşamasındaki problemlerine 

yönelik bir uygulama sunmaktadır. 

Yöntem: İnovasyon süreçlerindeki karar problemlerine MO'nun dahil edilişi için bir çerçeve 

oluşturulmaktadır. Ayrıca, Türkiye'deki İHA sınır devriyesi ile ilgili bir vaka çalışması için bir MO modeli 

geliştirilmektedir. 

Bulgular: Hesaplamalı deneyler, MO'nun İHA rotalarını ve stratejilerini optimize etme, operasyonel 

verimliliği ve inovasyon verimliliğini artırma konusundaki etkinliğini göstermektedir. Model, optimal 

tavsiyeleri ve farklı endişeler için dengeleri 210 farklı çözüm için ortalama 18 dakikada (medyan 5) 

bulmaktadır.  

Özgünlük: MO ve inovasyon verimliliği arasında bir bağlantı kurulmuştur. Türkiye'de sınır devriyesi için 

İHA operasyonları için bir yöneylem araştırması problemi sunulmaktadır. Okuyucuların araştırmalarında 

modeli uygulayabilmeleri için kod tabanı ve veriler açık sunulmaktadır. 

Anahtar Kelimeler: Mathematical Optimization, Innovation, Productivity, Unmanned Aerial Vehicles 

Matematiksel Optimizasyon, İnovasyon, Verimlilik, İnsansız Hava Araçları. 
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1. INTRODUCTION 

Innovation is a transformative process that converts novel ideas and methodologies into products and 
services. It ultimately contributes to the competitiveness of individuals, companies, societies, and 
economies. This process encompasses several key stages, including the discovery of new ideas, the 
conversion of ideas into tangible products and services, and the implementation in practice to generate 
added value for individuals, countries, and the planet.  

Throughout the course of human history, innovations have played a pivotal role in driving transformative 
developments. In the past decade alone, significant changes have been witnessed. One noteworthy 
example is the advancements in Electric Vehicle (EV) technology, spearheaded by companies like TESLA, 
which are revolutionizing the automotive industry (Teece, 2018). Similarly, innovations in renewable energy 
technologies have yielded remarkable outcomes, such as the reduction in solar panel costs and the 
mitigation of energy supply continuity issues through advanced battery systems (Moustakas et al., 2020). 
Innovations in areas like blockchain technology, encompassing decentralization, persistence, anonymity, 
and auditability, are reshaping the realms of finance and supply chain management (Zheng et al., 2018).  

Innovation plays a pivotal role in the advancement of countries, enabling the creation of new industries, 
boosting productivity, fostering sustainable growth, and driving economic development. Cantner et al. 
(2019) demonstrate the positive impact of public innovation incentives and innovations on long-term 
economic development in German regions. Similarly, Minford and Meenagh (2019) use a data-driven 
empirical modeling in the United Kingdom and show that research and development incentives stimulate 
economic growth. Consequently, governments prioritize and incentivize innovation in their policy-making 
strategies. Türkiye also recognizes the significance of innovation as a government strategy and policy and 
encourages innovations, evident in its investments in Unmanned Air Vehicles (UAV) and Electric Vehicles 
(EV). 

Productivity, on the other hand, refers to the efficiency of transforming inputs into outputs. It quantifies the 
relationship between outputs and inputs, reflecting the output achieved per unit of input. There is a close 
and mutually reinforcing relationship between innovation and productivity. Innovation plays a vital role in 
enhancing the productivity and competitiveness of enterprises and economies. Conversely, productivity 
serves as a driving force for innovation, exerting its influence throughout every stage of its initiation, 
advancement, and implementation. 

A typical innovation process involves numerous design problems. Enhancing productivity in these decisions 
is crucial. Traditional approaches rely on human intelligence and manual solutions. However, the scalability 
of human problem-solving is limited to small-sized problems. As decision problems have become 
increasingly complex due to larger data sizes and competitive environments, it has become imperative to 
integrate analytical approaches into the decision-making process. Fortunately, this is now more achievable 
in the context of the current digital transformation. Improved computational power and access to big data 
enable decision-makers to utilize analytical tools for their design problems. Analytical approaches have 
been recently popularized under the framework known as Artificial Intelligence (AI). AI overcome the 
limitations and scalability challenges faced by human intelligence, enabling them to process and analyze 
vast amounts of historical data more efficiently and make data-driven automated decisions. AI can identify 
new directions for innovation, optimize production costs, identify potential issues, and enhance efficiency 
and performance during implementation.  

There exists an important field that falls under the AI umbrella: Mathematical Optimization (MO). MO is a 
specific implementation of Operations Research (OR). It formulates decision-making problems into 
mathematical models and solves them using theories like linear algebra. OR has a long-standing history, 
and MO emerges as a contemporary transformation of its methodologies, leveraging computational 
resources to solve optimization problems without the need for extensive theoretical frameworks for users. 
Solver technologies like Gurobi and CPLEX have achieved remarkable performance levels (Mittelmann, 
2020) enabling automated solutions for complex problems through programming and software. 
Consequently, decision-makers have begun to leverage MO without requiring extensive expertise or a 
strong background in the field. MO can contribute to product, process, and method innovations, offering 
enhanced productivity performance. It can address problems of a scale that surpasses human intelligence 
throughout the entire innovation process, encompassing design problems of the pre-innovation, during 
innovation, and post-innovation stages. What sets MO apart, particularly from other predictive AI methods, 
is its capability to recommend decisions that are guaranteed to be optimal. This distinctive feature positions 
it in a unique and valuable role. 

In this paper, the focus is on advancing the understanding of the potential of MO in enhancing innovation 
productivity. An empirical case study is then developed to demonstrate the application of MO in utilizing a 
UAV fleet for border patrolling in Türkiye. The contributions of the paper can be summarized as follows: 
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• A link is established between MO, artificial intelligence, and innovation productivity. A framework is 
presented for incorporating MO into design problems of innovation processes. 

• A novel operations research problem is presented in the context of UAV operations for border 
patrolling in Türkiye. A mathematical formulation is developed, and computational experiments are 
conducted to explore its efficacy. By optimizing the UAV routes and strategies, MO not only 
improves the operational efficiency but also contributes to the broader objective of enhancing the 
productivity of the innovation.  

• The codebase and data are also made available to readers. This accessibility enables them to 
replicate or apply the model in their own research, using only the spreadsheet-based user interface 
of the codebase without the need to interact directly with the code. 

The paper is organized as follows. Section 2 evaluates innovation productivity within the context of analytics 
and the ongoing digital transformation. Section 3 explores the relationship between MO and the design 
problems of innovation, presenting an implementation framework. Section 4 presents the case study, 
covering the problem statement, mathematical formulation, computational experiments and a discussion. 
Finally, Section 5 concludes the paper by summarizing its key points and discussing potential challenges 
and future research directions. 

2. INNOVATION PRODUCTIVITY in the CONTEXT of ANALYTICS 

Productivity and innovation are interconnected drivers of prosperity, forming a mutually reinforcing 
relationship that encompasses several overlapping definitions (Carayannis and Grigoroudis, 2014). Broadly 
defining, meaningfulness and success of them are intrinsically linked, with each relying on the presence 
and support of the other. 

The innovation process encompasses multiple stages that involve various decision-making problems, with 
the term decision-making often referred to as design in the context of innovation management. Garud et al. 
(2013) review innovation process, and during the whole process, there are strategic design problems that 
need to be addressed, and the efficient and data-driven solution to these problems is of paramount 
importance for innovation productivity. The human intelligence had been acceptable for a long time to solve 
these design problems. Unfortunately, the scalability of human problem-solving is inadequate anymore 
when confronted with the complexity of current decision problems. The digital transformation is reshaping 
the addressing the design problems of the innovation process. This transformation is led by analytical 
approaches that promote scalability, automation, prediction, and optimization. Analytical approaches can 
be broadly classified into three categories (Camm et al., 2020):  

• Descriptive Analytics: These approaches revolve around summarizing and visualizing data and 
thus uncovering and understanding the present situation and performance of a system. The 
dominating field of study in this area is statistical analysis and data visualization.  

• Predictive Analytics: These approaches revolve around learning from historical data to predict 
future outcomes and behaviors. The dominating field of study in this area is Machine Learning (ML).  

• Prescriptive Analytics: These approaches revolve around developing models that use historical 
data to generate actionable recommendations and optimal courses of action for decision problems. 
The dominating field of study for this area is OR.  

The engines that utilize these analytical approaches have recently started to be classified under the AI 
framework. The positive perception that the term AI has garnered over the past decade is truly remarkable. 
It gives the impression that the methods and tools encompassed by this term are entirely novel and 
groundbreaking. However, many of the analytics encompassed by AI, such as linear regression, clustering, 
or Markov chains, existed for almost a century. For a comprehensive history and overview of the 
development of AI, the readers are referred to Haenlein and Kaplan (2019). The main factor that prevented 
these methods from widespread adoption in the past was the limitations in data availability and computing 
technology.  

Integration of AI into innovation management has the potential to increase overall innovation productivity.  
In two recent review papers, Haefner et al. (2021) present a review and framework on AI and innovation 
management, while Mariani et al. (2023) focus on AI in innovation research. Both studies offer valuable 
insights for AI adoption in innovation and indicate the potential benefits of AI in driving innovation and 
improving productivity. There has been a recent focus among economists on comprehending the 
implications of AI for innovation (Cockburn et al., 2019). McKinsey Global Institute is also highly optimistic 
about the positive impacts of AI on the innovation processes of firms (Jacques et al., 2017). Mariani et al. 
(2023) recently highlight pioneering organizations like Netflix and Airbnb that have embraced AI to address 
decision problems within their innovation processes and obtained increased productivity.  
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Upon revisiting the aforementioned classification of analytics, it is observed that the current trend in AI 
predominantly revolves around "predictive analytics Within the realm of AI, ML holds a prominent position, 
especially with the utilization of advanced prediction algorithms such as artificial neural networks. However, 
prescriptive analytics is still in the process of gaining the widespread adoption and recognition it deserves. 
It distinguishes itself from the previous two types of analytics by providing decision-makers with ready-
made optimal decisions. This unique feature sets it apart. The following section delves into the realm of 
MO, a prominent field in prescriptive analytics, and examines its connection with innovation productivity. 

3. LEVERAGING MATHEMATICAL OPTIMIZATION for INNOVATION PRODUCTIVITY 

AI can be broadly defined as the utilization of computers to perform data-driven tasks with specific 
objectives and constraints, simulating human intelligence without the need for direct human involvement. 
Within this expansive field, a particularly robust and rapidly gaining popularity subfield emerges known as 
Mathematical Optimization. MO is the recently popularized naming to describe OR. It mostly aims to 
combine OR methodologies with computing technology. Its roots can be traced back to the era of the First 
World War. To obtain a historical perspective of OR on a global scale, the readers are referred to McCloskey 
(1987). For a more specific insight into the Turkish context of OR, Sabuncuoğlu and Dengiz (2022) provide 
relevant information. 

MO consists of a wide range of methodologies that convert design problems into mathematical formulations 
and solve them. These formulations define the inputs, objectives, constraints, and decision requirements 
of the design problem at hand. By solving a formulation, MO seeks to identify optimal recommendations for 
the decision requirements. 

In the absence of ample computing power, MO necessitates extensive expertise and a solid theoretical 
foundation, rendering its approaches inaccessible to practitioners without a strong background in the field. 
In fact, in the late 1970s, there were even articles about the lack of a future for OR (Hall and Hess, 1978, 
Ackoff, 1979). However, in recent times, MO has gained an increased popularity. This is driven by the 
availability of advanced computing and solver technologies, which offer substantial computational power. 
Two widely recognized solvers in this field are Gurobi and CPLEX, known for their reliable performance. It 
is worth noting that there is a wide range of solvers available, both free and paid, catering to various needs 
and requirements. In benchmark problems, Gurobi has consistently demonstrated superior performance 
compared to other solvers, establishing itself as the preferred choice for many optimization tasks 
(Mittelmann, 2020).  

Today MO is recognized as one of the fastest growing professions, as highlighted by FORBES (Rothberg, 
2021). Furthermore, CBS NEWS has recently acknowledged it as the college major with the highest earning 
potential as of 2023 (Picchi, 2023). Criticizing the earlier opinions would be unfair, as they were formulated 
without the benefit of the current favorable conditions. It is unrealistic to expect everyone to possess the 
foresight and vision of esteemed figures like Professor Cahit Arf (Arf, 1959).  

In today's complex business environment, the design problems encountered in innovation processes have 
become increasingly intricate, surpassing the capabilities of manual or spreadsheet calculations performed 
solely by humans. They also require near-optimal solutions to be able to gain an advantage in competitive 
environments. These offer an excellent opportunity to use MO in innovation processes. Today, MO can 
recommend optimal solutions for large-scale problems, ensuring scalability, and automation, and enabling 
users to solve their problems without needing an extensive mathematical background.  

3.1. MO Implementation in Innovation Stages 

At the core of every innovation process is the essential practice of generating and solving ideas, where the 
decision-making aspect of innovation, often referred to as design by scholars and practitioners, plays a 
crucial role (Verganti et al., 2020). MO, being an inherent decision-making methodology, presents valuable 
opportunities for the design problems of innovation. Haefner et al. (2021) highlight the considerable 
increase in costs associated with innovation management. In this regard, MO holds immense potential as 
it can deliver significant cost reductions even in complex design problems. 

MO can enhance innovation productivity across three stages: 

a) Pre-innovation productivity: This stage focuses on how MO contributes to the generation of 
innovation. MO possesses the capability to assess vast amounts of data, consider various 
constraints and objectives, and make decisions that surpass human intelligence. This opens up 
new possibilities for advancements and the creation of products with broader applications. For 
instance, let's consider an EV manufacturer seeking to introduce innovative battery solutions to 
extend the driving range of their vehicles. By utilizing MO, decision-makers can find the minimum 
battery requirements that will maximize customer satisfaction by considering factors such as driving 
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speed, traffic conditions, and transportation infrastructure. It can also assist in optimizing material 
selection in battery production, considering factors such as durability, cost, and environmental 
impact. 

b) Providing productivity during innovation development: During product and process development, 
MO can scale and address problems of large magnitudes and complex issues that surpass human 
intelligence by leveraging past data and introducing automated solutions. This, in turn, leads to 
enhanced productivity throughout the innovation development. For instance, in the context of an 
EV manufacturing facility, MO can determine the optimal integration order of vehicle components, 
or optimize quality control processes, such as determining the optimal inspection points, sample 
sizes, and testing frequencies.  

c) Ensuring productivity after innovation deployment: The true impact of an innovation on the economy 
is only achieved when it is effectively implemented in practice. If an innovation is not deployed 
properly, it may underperform compared to existing products and processes. For instance, consider 
the challenge of positioning charging stations for electric vehicles (EVs). If this problem is not 
accurately addressed, EVs may face difficulties in finding convenient charging locations, hindering 
their market acceptance. Another example involves optimizing production plans by analyzing past 
data, market trends, and customer preferences. In all these design problems, MO can play a vital 
role in providing solutions. 

3.2. MO-Driven Framework for Innovation Productivity 

Next, a framework driven by MO for innovation management is introduced. Note that MO in decision-making 
is not a new concept, as it has a longstanding history under the OR framework. Only an adaptation of it to 
innovation management is presented below.  

The framework consists of the following steps. Please note that only Step 3 requires expertise in MO. Steps 
1, 2, 5, 6, 7, and 8 are generally the responsibility of decision-makers and users of the MO model. Steps 2, 
4, and 6 require programming skills, without any specific MO prerequisites. 

1. Problem Definition: Define innovation challenges and opportunities, as well as identify design 
problems that can benefit from increased productivity. Establish the ground rules of the defined 
problem, including the objective of the design, the decisions that need to be made, and the 
constraints that limit available options are identified.  

2. Data Collection and Processing: Gather relevant data related to the innovation design problem, 
including historical data and future predictions. Analyze the data and extract information that is 
relevant to the ground rules defined in the problem definition.  

3. Mathematical Formulation Development: Formulate the identified innovation design problem as a 
mathematical model that includes decision variables, objectives, and constraints.  

4. Translation of Mathematical Formulation to Computer: Translate the mathematical formulation into 
a format that solver technologies can comprehend by utilizing a computer programming language. 
For instance, to solve the model using Gurobi in Python, one can employ the Gurobi Python API 
(gurobipy).  

5. Model Solving Using Computing Technology: Solve the model using computing technology, for 
example, by utilizing the Gurobi solver. 

6. Reporting, Results Evaluation, and Validation: Translate the results into a format that can be 
understood by individuals without expertise in computer programming and MO. This step conducts 
studies to validate that the model behaves as intended and finds solutions that can be implemented 
in practice. Use reporting and visualization techniques. Provide detailed analyses and evaluations 
that demonstrate the impact of decisions on the objective and present the productivity gains 
achieved through the use of MO. 

7. Implementation and Execution: Implement the recommended decisions generated by MO into the 
corresponding design problem the innovation process. 

8. Performance Evaluation and Feedback: Collect feedback from the implementation process to refine 
the mathematical model and update the input data based on the resources utilized during the 
implementation of the recent MO run. This feedback will inform future iterations of the optimization 
runs, allowing for continuous improvement of the model's performance. 

Figure 1 presents the practical implementation of the framework. The blue shaded boxes represent 
components that can be handled by software teams without requiring expertise in MO. The green-shaded 
components require expertise in MO. In a typical design problem addressed with MO, there are two types 
of data sources: dynamic and stable. Stable data refers to fixed data that is used regardless of user input 
or the results of previous decisions. For example, for a problem of determining optimal charging station 
locations for EV vehicles in Ankara, geographical data of potential charging locations is stable data. The 
second data type is dynamic data, which can be inputted by the user or based on past decisions. For 
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instance, the minimum number of EV stations required in Ankara can be provided by the user. Once the 
data is collected from the data sources, input adapters should come into play. Input adapters are computer 
code snippets that translate the data into the MO computer model. Similarly, the MO model should be 
initially developed and formulated on paper and then translated into computer code using solver APIs. Once 
the solvers solve the problem optimally, a typical MO model produces two outputs: optimal decisions and 
the optimal objective function. The former provides recommendations to decision-makers for the defined 
and formulated decision problems, while the latter indicates the performance of the recommended 
decisions. Finally, a typical MO model should include an output adapter that converts the solver's results 
into more easily understandable reports and visualizations, enabling decision-makers to comprehend the 
results effectively. 

 

Figure 1. MO implementation framework 

4. CASE STUDY: UTILIZING UAVs for BORDER PATROLLING in TÜRKİYE 

UAV refer to aircraft that operate without a human pilot onboard and instead rely on autonomous systems. 
They are being employed for a diverse array of intricate missions worldwide. They have significantly 
transformed various domains with their innovative features on automation, versatility, safety, efficiency, and 
other technological advancements. They conduct autonomous or remote-controlled flights, replacing 
human pilots. Evers et al. (2015) and Elmokadem and Savkin (2021) highlight their increasing autonomy. 
They are versatile, serving diverse purposes in military operations, search and rescue missions, border 
patrolling, and wildlife inspection. They enhance safety by operating in hazardous environments, reducing 
risks to human lives. They require fewer resources, covering larger areas at lower costs and in less time. 
Ongoing technological advancements in their equipment such as improved batteries and miniaturized 
sensors drive continuous innovation and open up new avenues for research and development. MO has the 
potential to enhance the efficiency of all the factors mentioned above, leading to an increased productivity 
of UAV innovation.  

In this paper, the focus lies on enhancing the productivity of UAVs through addressing design problems in 
the post-innovation stage. Specifically, the efficient deployment of a UAV fleet for border patrolling activities 
in Türkiye is addressed. This problem can be categorized as a variant of the Vehicle Routing Problem with 
Profits (VRP) and shares similarities with the Team Orienteering Problem (OP). Comprehensive reviews of 
VRP and Team OP can be found in Braekers et al. (2016) and Gunawan et al. (2016), respectively. An 
example of VRP with profits is provided by Stavropoulou et al. (2019). Coutinho et al. (2018) and Rojas 
Viloria et al. (2021) offer comprehensive reviews on UAV routing and scheduling.  

The study diverges from the literature in several aspects. The UAV prize collection and routing literatures 
typically consider non-monitored terrains, movement between two targets, single trajectories between 
targets, and fixed prices. In contrast, uncertainty in prize detection is considered. Furthermore, a monitored 
terrain is considered by incorporating the risk of radar threats, an aspect seldom addressed in the literature. 
Additionally, the scope is expanded by including multiple UAVs in the analysis, a factor often overlooked in 
recent research. Also, different mission aspects including fleet size, mission duration, and mission safety 
are considered together. Table 1 provides a summary of closely related studies to the paper based on 
several factors, including the UAV's operational terrain, movement (between origin-destination or multiple 
targets), problem classification, UAV fleet size, and the considerations applied, whether as objectives or 
constraints. These studies have employed mathematical optimization approaches for routing to enhance 
the efficiency of UAV utilization. The “Terrain” column displays the modeling of the movement terrain. This 
can be either continuous or discretized, with the discretization achieved through methods like grid-based, 
trajectory selection, or waypoints. The “Movement” column specifies whether the movement is between two 
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targets or involves visiting multiple targets. The "Class" column categorizes problems into four types: 
shortest path (SP), traveling salesperson problem (TSP), vehicle routing problem (VRP), or orienteering 
problem (OP). "Fleet size" denotes the number of UAVs examined in each study.  

Among these studies, this study shares some similarities with the work conducted by Moskal et al. (2023). 
A similar terrain representation is utilized in this study by considering waypoints that UAVs can change their 
course of direction, and employ similar approaches to model the information search and collection process 
and measure the radar detection threat. However, the model and experiments exhibit significant 
differences. The study extends beyond by incorporating a fleet of UAVs, whereas their study focuses on 
TSP with a single UAV. Moreover, the problem is approached from a multi-objective perspective, extracting 
the tradeoffs among mission duration, mission safety, and fleet size. The primary goal is to recommend an 
ideal fleet size, addressing a practical high-level design problem in UAV post-innovation deployment. 
Additionally, a unique case study focused on border patrolling in Türkiye is developed, and the associated 
data and solution software developed are openly shared. 

Table 1. Comparative table for related UAV literature 

Study Terrain Movement Class 
Fleet 
size Considerations 

Mittal and Deb (2007) Continuous Origin-destination SP Single Mission duration 
Mission safety 

Pfeiffer et al. (2009) Continuous Origin-destination TSP Single Mission duration 
Mission safety 

Tezcaner and Köksalan 
(2011) 

Discretization by grids Multiple targets TSP Single Mission duration 
Mission safety 

Guerriero et al. (2014) Continuous Multiple targets VRP Multiple Mission duration 
Information 
collection 
Deployed UAVs 

Moskal and Batta (2017) Discretization by 
waypoints 

Multiple targets OP Single Mission duration 
Information 
collection 

Dasdemir et al. (2020) Continuous Multiple targets TSP Single Mission duration 
Mission safety 

Dasdemir et al. (2022) Discretization by 
trajectory 

Multiple targets OP Single Information 
collection 
Mission duration 
Mission safety 

Tezcaner Öztürk and 
Köksalan (2023) 

Continuous Origin-destination TSP Single Mission duration 
Mission safety 

Moskal et al. (2023) Discretization by 
waypoints 

Multiple targets OP Single Information 
collection 
Mission duration 
Mission safety 

The case study involves design challenges in both high and low levels. The high-level design problems are 
determining the optimal fleet size, mission duration and risk tolerance to attain the desired performance in 
information collection. The low-level design problems pertain to the operational aspects within a given fleet 
size, mission duration and risk tolerance. These encompass selecting the targets to visit, determining the 
number of searches at the selected targets, allocating UAVs to the selected targets, and making routing 
decisions that dictate the optimal route for each UAV to visit the assigned targets.  

The solution process involves creating a mathematical formulation and a computer program that translates 
the formulation into code, leveraging the power of the Gurobi solver. The development of the mathematical 
formulation necessitates expertise in the field. Once the model is developed, the subsequent steps involve 
straightforward computer programming tasks, enabling automated solving by simply adjusting the input 
parameters. Similar to other AI engines, the user interacts with the model by supplying inputs and prompts, 
while the underlying model works to generate the desired solutions. The data and computer code of Türkiye 
case study are provided openly to readers, promoting the reproducibility of the results and aiding 
researchers in further developing the model.  

This case study contributes to the existing UAV routing and scheduling literature by introducing a novel MO 
model and offering a practical demonstration. While drawing from the work of Moskal et al. (2023) who 
study an information collection problem with a single UAV, the study goes beyond by incorporating a fleet 
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of UAVs and addressing the high-level design problem of optimizing the fleet size. In addition, the approach 
diverges from traditional models by considering uncertain prizes, where the presence of a prize can only 
be confirmed after a successful search, a notable deviation from the conventional fixed prize assumption. 
Furthermore, a monitored terrain is considered by incorporating the risk of radar threats, an aspect seldom 
addressed in the literature. 

4.1. Problem Statement 

The objective of the mission is maximizing the total amount of utilized information from the mission terrain 
using a fleet of UAVs, while satisfying the restrictions on mission duration and likelihood of being detected. 
In this section, the context of the problem, including the mission terrain and operational structure, is 
introduced. 

4.1.1. Mission Terrain  

The mission terrain is presented in Figure 2, which showcases the ten potential search locations referred 
to as targets from this point onward. Among these targets, a total of seven search locations along Türkiye's 
borders, as well as three additional search locations in the Aegean, Mediterranean, and Black Seas, are 
considered. Initially, all UAVs are stationed at Ankara, marked as the home base (ℎ) on the map. All UAVs 
depart from the home base, visit a set of target regions to search and collect information, and then return 
to Ankara to complete the mission.  

The Bayraktar Akıncı is considered as the UAV of choice. While this UAV is primarily designed for target 
neutralization missions due to its exceptional payload capacity and launching capabilities, it is assumed 
that decision-makers are selecting a fleet of Akıncı UAVs to optimize their operational use specifically for 
border patrolling and information collection purposes in Türkiye. The Bayraktar Akıncı can fly with a flight 
speed ranging from approximately 280 to 360 km/h and can operate for 24 hours (Baykar, 2023). Its ample 
payload capacity allows for the integration of search and collection sensors. In this case study, the flight 
speed is set to 360 km/h and the maximum mission time to 24 hours. 

 

Figure 2. Mission terrain with 10 search targets 

Each target 𝑗 is characterized by two attributes: the probability of containing information (𝜌𝑗), which 

represents the chance of the existence of a source of information at target region 𝑗, and the radar detection 

threat (𝜆𝑗), which represents the detection per unit of time the UAV is exposed to while conducting search 

activities in region 𝑗. Once a target is chosen for information search, the UAV proceeds to navigate towards 
the designated center of that region. Upon arrival, it commences the search and recording process to gather 
the necessary information.  

It is assumed that the UAV conducts a circular search pattern, with a fixed duration of 1 hour allocated for 
this purpose. The approximate lengths of the borders close to the targets are scaled to fit within the range 
of [80, 150] kilometers and the range of [0.25, 1], and use the scaled values as the radius for the circular 
search areas and as the likelihood of information existence, respectively. Similarly, the elevations of the 
mountains near the targets are scaled to range [0.02, 0.05] kilometers, serving as the detection rates in the 
corresponding search regions.  
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4.1.2. Information Search and Collection 

In practical scenarios, UAVs are susceptible to various sources of volatility. To account for one of these 
factors, uncertainty in the availability of information is considered. The probability of successfully detecting 
information is determined by both the availability of the information and the search sensor carried by the 
UAV.  

Each UAV is equipped with a search and a collection sensor. The effectiveness of the search sensor for 
the search at target region 𝑗 (𝑒𝑠,𝑗) impacts the chance of successfully detecting the available information 

source. On the other hand, the effectiveness of the collection sensor (𝑒𝑐) impacts the percentage of the 
detected source is utilized in a visit.  

Multiple visits to the same target region are allowed due to the imperfections of the search and collection 
sensors. Equation 1 is used to compute 𝑒𝑠,𝑗 (Xia et al., 2017). In the equation, the effective range of the 

search sensor (𝑊), the flight speed of the UAV (𝑣), and the radius of the target region 𝑗 (𝑟𝑗) is used. In this 

study, 𝑊 and 𝑣 are set to 80 km and 360 km/h. 

𝑒𝑠,𝑗 = 1 − (𝑒

−𝑊⋅𝑣

𝜋⋅𝑟𝑗
2

)           (1) 

The total expected information collection is maximized, which serves as a deterministic approximation to 
account for the inherent uncertainty explained above in the information detection and collection. It is 
assumed that the presence of a single piece of information source that is subject to search and collection 
upon detection. This assumption aligns with the focus of search theory literature, which commonly 
addresses the task of finding a single source. For instance, Xia et al. (2017) also consider the assumption 
of one source of information when conducting information search using UAVs. 

Let 𝐼𝑗,𝑚 represent a discrete random variable that indicates the amount of information collected from target 

𝑗 during visit 𝑚. In the case where a valuable information is detected during the first visit, 𝐼𝑗,1 is set to 1 ⋅ 𝑒𝑐 

as 𝑒𝑐 of a one unit of information can be collected. It is assumed that the collectible information diminishes 
exponentially with each subsequent visit, irrespective of the outcome of the search process during the 
previous visit. This collection pattern is expressed through the exponentially decreasing function 
(1 − 𝑒𝑐)𝑚−1 − (1 − 𝑒𝑐)𝑚, which is adopted from Moskal et al. (2023). Consequently, the probability mass 

function of 𝐼𝑗,𝑚 can be formulated as in Equation 2. 

𝑃(𝐼𝑗,𝑚) = {

𝜌𝑗 ⋅ 𝑒𝑠,𝑗 , 𝑖𝑓 𝐼𝑗,𝑚 =  (1 − 𝑒𝑐)𝑚−1 − (1 − 𝑒𝑐)𝑚

1 − 𝜌𝑗 ⋅ 𝑒𝑠,𝑗 , 𝐼𝑗,𝑚 = 0

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     (2) 

Consequently, the expected amount of collected information from vehicle 𝑘 during its 𝑚𝑡ℎ visit to target 𝑗 is 

calculated using the formula 𝐸[𝐼𝑗,𝑚] =  𝜌𝑗 ⋅ 𝑒𝑠,𝑗 ⋅ ((1 − 𝑒𝑐)𝑚−1 − (1 − 𝑒𝑐)𝑚). 

4.1.3. Search Time and Travel Times 

Each UAV allocates a specific duration to the search and recording process at each visited target. The time 
allocated for each revisit is independent, emphasizing the necessity of conducting the search and recording 
process on every visit. This restarting assumption remains valid even if previous visits have detected 
information, as the source of information may have relocated or adopted camouflage measures upon 
realizing the presence of the UAV in the region. 

However, a gradual reduction of 𝛼% is assumed in the duration of the search and recording process with 
each revisit. This reduction acknowledges that UAVs become more acquainted with the region and can 

focus their efforts on specific areas. The time that a UAV spends at target 𝑗 during its 𝑚𝑡ℎ visit is represented 

as 𝑠𝑗,𝑚 =  𝑠𝑑 ⋅ 𝛼(𝑚−1), where 𝑠𝑑 represents the specific duration of a search and collection process and 𝑠𝑑 

is set to 1 hour and 𝛼 is set to 80%. 

Each UAV needs to travel to the center of the target, as these central waypoints allow for changes in the 

UAV's flight direction. Let 𝑡𝑖,𝑗  represent the travel duration from target region 𝑖 to target region 𝑗. To 

determine the travel distance between pairs of targets, the Euclidean distances calculated using the 
waypoints. Dividing this distance by the speed of the vehicle provides us with the corresponding travel 
duration. In order to account for the consistent speed of the vehicle, a discount to longer travel distances is 
implemented. Specifically, distances exceeding the minimum distance and extending up to the maximum 
distance in the terrain are subject to a discount of up to 30% of their Euclidean distance. This discount is 
applied in a linear manner, gradually increasing from the minimum distance to the maximum distance. It is 



 

 Cilt / Volume 58 | Sayı / Issue 2 
 

292 

Erdi Daşdemir 

assumed that there are no flight dynamics constraints such as turning angles or other physical limitations 
that UAVs may encounter during their maneuvers. 

4.1.4. Radar detection threat 

Similar to Pfeiffer et al. (2009) and Moskal et al. (2023), the Poisson process to represent the detection 

threat is adopted. Let  𝑟𝑘 denote the random variable counting the number of detections that vehicle 𝑘 is 

exposed to, and 𝑃(𝑟𝑘 =  𝑛) as the probability of vehicle 𝑘 experiencing 𝑛 detections.  Moskal et al. (2023) 

demonstrates, the random variable 𝑟𝑘 exhibits the properties of a Poisson process and thus follows a 

probability distribution. Let 𝜃𝑘 denote the average number of detections experienced by UAV 𝑘. The 
distribution can be expressed as in Equation 3. 

𝑃(𝑟𝑘 = 𝑛) =  
1

𝑛!
⋅ 𝜃𝑘 ⋅ 𝑒𝑓

−𝜃𝑘
, 𝑛 = 0,1,2, …       (3) 

4.2. Mathematical Formulation 

Table 2 presents the mathematical notation in and then present the formulation. 

Table 2. Mathematical notation 

Notation Definition 

Sets  
𝑁 Set of nodes including targets and home base. 

𝐾 Set of vehicles. 

𝑀 Set of revisits. 

𝑇 Set of time steps. 
Parameters  
𝐼𝑗,𝑚 Expected information collected from target 𝑗 at visit 𝑚. 

𝐹 Maximum allowed mission duration, ℎ (hour). 

𝛽 Maximum risk acceptable for the probability of being detected.  

𝑒𝑐 Collection sensor effectiveness. 

𝑒𝑠 Search sensor effectiveness. 

𝑠𝑗,𝑚 Search and recording duration in terms of ℎ that a UAV spends at target 

𝑗 at its 𝑚𝑡ℎ visit. 
𝑑𝑖,𝑗 Travel duration in terms of ℎ from target region 𝑖 to 𝑗. 

𝑣 UAV flight speed, 𝑘𝑚/ℎ 

𝜆𝑖,𝑗 The number of detections per unit of time the UAV is exposed to while 
traveling from target 𝑖 to 𝑗. 

𝜆𝑗 The number of detections per unit of time the UAV is exposed to when 
conducting search activities in region 𝑗. 

𝛿 Sufficiently small positive constant. 
Decision Variables 

𝜃𝑘  Average number of detections experienced by UAV 𝑘. 

𝑡ℎ Arrival time of the UAV returning to the home base at the latest. 

𝑦𝑗,𝑚
𝑘 ∈ {0,1} Binary variable indicating whether vehicle 𝑘 searches target 𝑗 for the 𝑚𝑡ℎ 

time. 

𝑥𝑡,𝑖,𝑗
𝑘 ∈ {0,1} Binary variable indicating whether vehicle 𝑘 travels from target 𝑖 to target 

𝑗 at time step 𝑡. 

Armed with above notation, the mathematical formulation is ready to be presented. 

𝑀𝑎𝑥 ∑ ∑ 𝐼𝑗,𝑚 ∑ 𝑦𝑗,𝑚
𝑘

𝑘∈𝑘 − 𝛿 ⋅ 𝑡ℎ𝑚∈𝑀𝑗∈𝑁𝑡
       (4) 

s.t. 

𝜃𝑘 ≤ −𝑙𝑛(1 − 𝛽)        ∀𝑘 ∈ 𝐾  (5) 

𝜃𝑘 = ∑ ∑ ∑ 𝜆𝑖,𝑗 ⋅ 𝑑𝑖,𝑗 ⋅ 𝑥𝑡,𝑖,𝑗
𝑘

𝑗∈𝑁∖{𝑖}𝑖∈𝑁𝑡∈𝑇 + ∑ ∑ 𝜆𝑗 ⋅ 𝑠𝑗,𝑚 ⋅ 𝑦𝑗,𝑚
𝑘

𝑚∈𝑀  𝑡∈𝑇   ∀𝑘 ∈ 𝐾  (6) 

𝑡ℎ ≤ 𝐹            (7) 

𝑡ℎ ≥ ∑ ∑ ∑ 𝑑𝑖,𝑗 ⋅ 𝑥𝑡,𝑖,𝑗
𝑘

𝑗∈𝑁\{𝑖}𝑖∈𝑁 + ∑ ∑ 𝑠𝑗,𝑚 ⋅ 𝑦𝑗,𝑚
𝑘

𝑚∈𝑀  𝑗∈𝑇𝑡∈𝑇  ∀𝑘 ∈ 𝐾    (8) 
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∑ 𝑦𝑗,𝑚
𝑘 ≤ 1𝑘∈𝐾      ∀ 𝑗 ∈ 𝑁\{ℎ}, 𝑚 ∈ 𝑀    (9) 

∑ 𝑦𝑗,𝑚
𝑘

𝑘∈𝑘 ≥ ∑ 𝑦𝑗,𝑚+1
𝑘

𝑘∈𝑘    ∀ 𝑗 ∈ 𝑁\{ℎ}, 𝑚 ∈ 𝑀    (10) 

∑ 𝑦𝑗,𝑚
𝑘

𝑚∈𝑀 ≤  ∑ ∑ 𝑥𝑡,𝑖,𝑗
𝑘

𝑖∈𝑁𝑡∈𝑇    ∀ 𝑗 ∈ 𝑁\{ℎ}, ∀𝑘 ∈ 𝐾    (11) 

∑ 𝑥1,ℎ,𝑗
𝑘

𝑗∈𝑁\{ℎ} = ∑ ∑ 𝑥𝑡,𝑗,ℎ
𝑘

∈𝑁\{ℎ}𝑡∈𝑇\{1}   ∀𝑘 ∈ 𝐾      (12) 

∑ 𝑥1,ℎ,𝑗
𝑘

𝑗∈𝑁𝑡
= 1    ∀ 𝑘 ∈ 𝐾     (13) 

∑ 𝑥𝑡,𝑖,𝑗
𝑘

𝑖∈𝑁 =  ∑ 𝑥𝑡+1,𝑗,𝑖
𝑘

𝑖∈𝑁    ∀ 𝑡 ∈ 𝑇, ∀ 𝑗 ∈ 𝑁\{ℎ}, ∀ 𝑘 ∈ 𝐾   (14) 

𝑥𝑡,𝑖,𝑗
𝑘 ∈ {0,1}     ∀ 𝑡 ∈ 𝑇, ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗, ∀𝑘 ∈ 𝐾  (15) 

𝑦𝑗,𝑚
𝑘 ∈ {0,1}     ∀ 𝑗 ∈ 𝑁\{ℎ}, ∀ 𝑚 ∈ 𝑀    (16) 

Objective Function 4 maximizes the total expected collected information from the mission terrain. It includes 
a secondary component that considers the return time of the UAV to the base, prioritizing solutions with 
smaller total duration in case multiple optimal solutions have the same expected collected information.  

Constraint 5 imposes a limit on the average detection experienced by the UAVs, while Constraint 6 
calculates the average detection rates of the UAVs. These two constraints serve as a linear approximation 
to the radar restriction constraint described in Equation 17. 

𝑃(𝑟𝑘 ≥ 1) ≤  𝛽    ∀𝑘 ∈ 𝐾      (17) 

Proposition 1. Constraints 5 and 6 are valid equations to replace Equation 17. 

Proof. Equation 17 indicates that the probability of a vehicle being detected at least once must be lower 
than the tolerance threshold 𝛽 set by decision makers. Constraints 5 and 6 are valid equations to replace 

Equation 17. By subtracting both sides of Equation 17 from 1, it is found that 1 - (𝑟𝑘 ≥ 1) ≤ (1 − 𝛽). Since 

1 - 𝑃(𝑟𝑘 ≥ 1) is equivalent to  𝑃(𝑟𝑘 = 0), the left side can be replaced with 𝑃(𝑟𝑘 = 0), resulting in the 

inequality 𝑃(𝑟𝑘 = 0) ≤ (1 − 𝛽). Furthermore, 𝑃(𝑟𝑘 = 0) is equal to 𝜃𝑘 as defined in Equation 3. The 

conclusion can be drawn with the equation 𝜃𝑘 ≤ (1 − 𝛽), as presented by Constraint 5. 

Constraint 7 imposes a limitation on the mission time by restricting the largest returning time to the home 
base among all UAVs in the fleet. In other words, the largest returning time to the base is determined as 
the largest flight duration among all UAVs and is subject to the constraint defined by parameter 𝐹. The 
calculation of the largest returning time to the home base is carried out by Constraint 8, which is derived 
with the assistance of the second part of Objective Function (Equation 4). 

Constraint 9 guarantees that each revisited of a target can only be performed once by a single vehicle. For 
instance, if a target region is visited for the first time, it can only be done by one vehicle. Similarly, if it is 
visited for the second time, it must also be performed by only one vehicle.  

Constraint 10 establishes the sequence of revisits, ensuring that subsequent revisits to a target can only 
be conducted if the earlier visits have already been completed. Constraint 11 ensures that if a vehicle 
performs a search at a target, it must have arrived at that target. This constraint establishes the requirement 
that a vehicle must reach the target before conducting any search operations.  

Constraint 12 states that any vehicle that leaves the home base at the first time step must return to the 
base in one of the subsequent time steps. This constraint ensures that vehicles that depart from the base 
initially will eventually make their way back to the base after completing their missions. 

Constraint 13 ensures that all UAVs in the fleet depart from the base at the first time step. This constraint 
guarantees that every vehicle initiates its mission at the beginning of the planning horizon. 

Constraint 14 represents flow balance equations that ensure the consistency of vehicle movements. It 
enforces that when a vehicle arrives at a target at a particular time step, it must depart from that target in 
the subsequent time step. This constraint maintains the continuity of vehicle movements between targets, 
facilitating a coherent and efficient mission plan. Equations 15 and 16 define decision variables. 
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4.3. Data and Software 

A computational application has been developed to accompany the mathematical model and case study, 
which is publicly available on GitHub2 to support reproducibility efforts. This codebase, programmed in 
Python, leverages the Gurobi Optimizer via the gurobipy API to solve the mathematical model. Designed 
as a command-line application, the codebase processes input data from a spreadsheet, computes optimal 
solutions, and outputs these solutions into a new spreadsheet file. This streamlined process allows users 
to adjust input parameters without direct code interaction, transforming the codebase into an accessible, 
spreadsheet-integrated primitive software tool. This design is particularly beneficial for fellow researchers, 
enabling them to replicate the findings, apply the model to analogous problems, or adapt the dataset to 
their specific research contexts. 

To operate this primitive software, users must ensure the installation of the required computational 
environment on their systems, including Python, Gurobi, and an active Gurobi license. The input file, located 
in the designated input folder, comprises three sheets: the first two sheets pertain to target-specific data, 
while the third sheet contains general parameters like the number of targets and the selected run mode. 
The software offers two operational modes: “single_objective”, which solves the model with predefined 
parameters, and “multi_objective”, which iteratively modifies parameters such as the time limit, detection 
limit, and vehicle size to analyze trade-offs in information collection, mission duration, mission safety, and 
fleet size. Detailed operational guidelines are available in the accompanying read me file. 

In addition to the codebase, two sets of raw data are provided: one pertaining to the case study and another 
for a larger, hypothetical instance. These datasets are further elaborated upon in subsequent sections. The 
raw data requires transformation into a compatible format for the model code, a process facilitated by the 
provided scripts in the instance generator folder. 

4.4. Computations 

The models are solved with the GUROBI Optimizer 10.0.1 (Gurobi Optimization, 2024) through the 
developed Python software on a Dell 32-core computer running Linux Centos 7.5.x with a processor Intel 
Xeon Gold 6130 CPU, @32 x 2.10GHz and 192 GB usable RAM (CCR, 2024).  

To review the parameter settings, 𝑁 =  {ℎ, 1, 2, . . . , 10}, 𝑀 =  {1, 2, 3}, and 𝑇 =  32. Setting 𝑇 =  32 is 

sufficient as it is larger than the suggested value (|𝑁/{ℎ}| ⋅ |𝑀| + 1) by Moskal et al. (2023) for a similar 
modeling approach. This ensures that the time step index does not restrict the movement of the UAVs. It 
is assumed that the vehicle is the Bayraktar Akinci with a speed of 𝑣 =  360 km/h. Geographical information 
on the terrain was extracted from Google Maps, and Euclidean distances between target pairs were used. 
As vehicle speed stability decreases fuel consumption in practice, discounts to longer travel distances are 
applied. These discount rates increase linearly from the minimum distance to the maximum distance in the 
terrain, where the maximum distance is discounted 30%. For the search sensor parameters, 𝑊 is set to  80 

km, the search duration 𝑠𝑑  is set to 1 hour, and 𝛼 is set to 80%.  

Different restriction combinations are considered, and the model is solved for each combination. 𝐾 =
 {1, … . , 𝑘𝑚𝑎𝑥}, where 𝑘𝑚𝑎𝑥 ∈ {2, 3, 4, 5, 6, 7, 8}, 𝐹 ∈ {4, 8, 12, 16, 20, 24} and 𝛽 ∈ {0.01, 0.02, 0.03, 0.04, 0.05} 
are used. The model is solved for each combination of these restrictions in order to extract insights about 
their impact and help decision makers in their high-level decisions. In all iterations, termination time for 
solver is set to to one hour. The decision to limit the runs to 1 hour was driven by the extensive nature of 
the computational experiments conducted. at a maximum of 1 hour per run, the total computation time could 
extend to 210 hours (approximately 8.75 days) in the worst-case scenario, since some cases may be 
resolved more quickly. 

4.4.1. General Results 

The analysis is initiated examining the results in a broader manner, with a focus on the distributions of three 
pivotal output metrics: expected collected information, solution time, and termination gap (see Figure 3). It 
is imperative to note that in the specific case study, the maximum expected information collection value 
stands at 2.106, and this maximum is achieved when all targets are visited. These distributions of three 
metrics offer valuable insights into the behavior of the model across multiple iterations and the variability in 
its performance, as quantified by these three metrics. 

It is worth noting that the majority of solutions exhibit a minimal gap, typically hovering around 0%. 
Nevertheless, there exist instances characterized by a significantly larger gap. Furthermore, while the 
majority of runs conclude expeditiously, a few require a considerably longer duration to reach a solution. 
The average solution time across the 210 runs is approximately 18 minutes (1097 seconds) and the median 

                                                           
2
 https://github.com/edasdemirlab/production-innovation-uav-2023 
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is only 5 seconds.  Of note, the distribution of expected collected information exhibits a somewhat bimodal 
pattern, featuring two prominent peaks. In summary, it is evident that the results exhibit variability across 
all three metrics. This variability primarily stems from the influence of constraints pertaining to mission time, 
detection probability, and fleet size considerations. 

 

Figure 3. Distributions of three pivotal output metrics 

Subsequently, the impact of three constraints on the three-key metrics of interest is investigated. The Table 
3 presents the Pearson correlation coefficients. Notably, a robust positive correlation emerges between 
expected information collection and the "Mission Time Limit," while a moderately positive correlation is 
observed with the "Number of Vehicles." This observation is logical, as an increase in the allowed flight 
duration and fleet size facilitates the visiting of more targets and the subsequent collection of more 
information. Conversely, a weak negative correlation is detected between solution time and both the 
"Detection Count Limit" and the “Number of Vehicles”. This indicates that when the fleet size is limited and 
radar constraints are stringent, the model faces difficulties in identifying optimal solutions within the 
prescribed one-hour timeframe. Similarly, the "Mission Time Limit" exhibits a negative correlation with the 
termination gap, implying that the utilization of restrictive time limits leads to either the model's struggle in 
discovering optimal solutions or in substantiating their optimality. 

Table 3. Correlation coefficients between the restrictions and three metrics 

 Expected Collected Information Solution Time Gap 

Number of Vehicles 0.284 -0.147 0.043 
Mission Time Limit 0.746 -0.007 -0.280 
Detection Count Limit 0.175 -0.283 0.055 

Next, potential high and low-level design challenges that could manifest during the post-innovation phase 
of UAV deployment are investigated, with the aim of evaluating the results from a managerial perspective. 

4.4.2 High-level Design Problems 

The high-level design problems in post innovation stage of UAV deployment for the decision makers are 
determining the optimal fleet size, mission duration and risk tolerance to attain the desired performance for 
decision-makers in information collection.  

Figures 3 and 4 present the results illustrating the relationship between total expected information collection 
and fleet size. Since this relationship is directly influenced by the limitations of mission duration and risk 
tolerance, two figures are provided.  

In Figure 4, it is assumed that decision-makers are not risk-seeking and therefore enforce a restrictive 
detection limitation with 𝛽 = 0.1. The results indicate that, for a fixed fleet size, the collected information 
tends to increase with longer flight durations. However, this increase is limited when the fleet size is small. 
For instance, when |𝐾| = 2, increasing the mission duration limit from 4 to 12 helps increase the information 
collection. However, increasing it from 12 to 24 does not offer any additional benefits in achieving higher 
information collections. This behavior remains consistent when the fleet size is increased, with the 
advantage of higher information collections achievable in shorter durations due to the presence of more 
UAVs. With a greater number of UAVs, the targets can be divided among them, resulting in shorter routes 
for each UAV and reduced exposure to detection threats. It is noticed that the maximum achievable 
information collection in the terrain, which is approximately 2, can only be attained when the fleet size 
consists of 8 UAVs and the mission duration limit is set to 12 or greater. In essence, decision-makers should 
prioritize building a fleet of 8 UAVs and limit the mission duration to 12, as increasing it beyond that 
threshold does not yield any additional advantage in fully utilizing the information from the mission terrain. 
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Figure 5 showcases the results when 𝛽 = 0.5, indicating that decision-makers are less concerned about 
detection threats as the mission primarily takes place in Türkiye and the terrain is non-hostile. Even a small 
fleet size can now achieve the maximum attainable information collection. For instance, decision-makers 
can establish a fleet consisting of two UAVs and set a mission duration limit greater than 20, which would 
be sufficient to fully utilize the terrain. Alternatively, if decision-makers prefer a shorter mission duration and 
are willing to have a larger number of aircraft in their fleet, four UAVs and a 16-hour limitation or five UAVs 
and 12-hour limitation would be enough to collect the available information. It is worth noting that the results 
indicate no additional benefit in increasing the fleet size from four to eight UAVs, so there is no need to 
include four extra UAVs in the fleet. This could result in significant cost savings considering the setup and 
operational expenses associated with the additional UAVs.’ 

 

Figure 4. Relationship between fleet size and expected information collection when 𝜷 = 𝟎. 𝟏 

 

Figure 5. Relationship between fleet size and expected information collection when 𝜷 = 𝟎. 𝟓 
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These analyses serve as compelling demonstrations of the MO’s ability to provide optimal 
recommendations for critical design problems. Typically, determining a fleet size while considering flight 
duration and radar detection threat is a highly complex task for human intelligence. However, with the 
utilization of MO, the problem is efficiently solved. These iterative runs encompass a total of 210 runs, all 
of which were resolved within 1 hour. The computational results are presented in Figure 6 using boxplots, 
which effectively capture the variability attributed to the fleet size. The mean and median solution time 
across the 210 runs is 1097 and 5 seconds, respectively. In many instances, the solver finds the solution 
within seconds. While there are cases where the solution time reaches the maximum limit, 1 hour is still a 
reasonable timeframe for making strategic decisions regarding fleet size and mission duration.  

The computational performance can be further enhanced by understanding the factors that affect the 
computational requirements. The solver may face challenges in finding the initial solution, which can be 
addressed using heuristic approaches, or it may find the optimal solution quickly but struggle with proving 
its optimality, which can be improved through the use of valid equations and cuts. Although these aspects 
are beyond the scope of this study, it is worth mentioning that performance improvements are possible. 
Furthermore, solver technology is advancing at a rapid pace. Problems that were unsolvable or had very 
long solution times just a couple of years ago can now be solved much more efficiently due to 
advancements in computing power and solver technology.  

 

Figure 6. Computational requirements of the model 

4.4.3 Low-level Design Problems 

The low-level design problems in the post-innovation stage of UAV deployment for decision-makers involve 
making optimal decisions at the operational level. These decisions revolve around the allocation of the UAV 
fleet to target locations. This includes determining which targets should be visited, how many times they 
should be visited, assigning them as tasks to specific UAVs, and determining the visiting order or route for 
each UAV. 

To showcase the effectiveness of MO in providing optimal recommendations to decision-makers, the 
objective and decision space of the case with fleet size of 4, a risk tolerance of 0.5, and a mission duration 
limitation of 16 hours is presented. The results in the objective space are as follows: total collected expected 
information, solution time (in seconds), longest flight duration among UAVs (in hours), and largest detection 
exposure among UAVs are 2.02, 4.74, 14.99, and 0.25, respectively. 

Figure 7 displays the allocations of UAVs to targets and the routes they follow. The results indicate that 
UAV 1 visits targets 5, 4, and 2, and then returns to the base. It performs 3 searches at targets 5 and 2, 
and a single search at target 4. UAV 2, on the other hand, visits targets 9, 6, and 8, and then returns to the 
base. It conducts 1 search at target 9, 3 searches at target 6, and 2 searches at target 8. Finally, UAV 3 
visits targets 10, 1, and 3, and then returns to the base. It carries out 3 searches at all three targets.   
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Figure 7. Demonstration of decisions in the operational level 

4.5 Performance Evaluation of the Model on a Larger Instance 

In practical UAV routing scenarios, the operational strategy typically does not encompass a large number 
of targets. This limitation arises from the distribution of adversaries within the mission terrain and the fuel 
capacity constraints of the UAVs. A considerable portion of the literature focuses on UAV movements 
between a single origin and destination, thereby restricting the number of nodes to two. Even among studies 
that consider multiple targets, the number of nodes involved is relatively modest. For instance, Dasdemir 
et al. (2020) investigate UAV routing problems with 5, 9, and 15 targets, while Moskal (2023) examines 
scenarios with 12, 16, and 28 targets. In this context, the problem instance, featuring 11 nodes (1 base and 
10 targets), aligns well with practical scenarios and the scope of existing literature. It's worth noting that for 
border patrolling operations in Türkiye, scenarios involving more than the modeled 11 observation points 
are unlikely. However, the model possesses the flexibility to accommodate larger instances. To 
demonstrate this and investigate the computational performance of the model for larger instances, an 
instance with 21 nodes (1 base and 20 targets) nodes is generated. This size is large enough compared to 
literature, and it covers almost most of the part of Türkiye. The map of the instance is provided in Figure 8. 

A computation is conducted to assess the model's performance across various combinations of constraints. 
In this evaluation, no low-level decision-making details are presented, as they hold greater relevance in the 
context of the actual case study. The primary focus here is on examining the computational performance 
of the model. The parameter settings employed were consistent with those outlined in the start of 
“Computations” section, with the exception that 𝑇 =  62 and the termination condition is set to either a 3% 

gap or a 1-hour time limit. The other settings are 𝐾 =  {1, … . , 𝑘𝑚𝑎𝑥}, where 𝑘𝑚ax ∈ { 8, 10, 12}, 𝐹 ∈
{ 8, 16, 24} and 𝛽 ∈ {0.01, 0.03, 0.05}. This resulted in a total of 27 different combinations being tested. 

 

Figure 8. Larger problem instance with 1 base and 20 targets 
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The scatter plots in Figure 9 illustrate the variation in solution time against different mission durations, 
detection limits, and fleet sizes. The analysis reveals that cases terminating at the 3600-second mark are 
predominantly clustered at the lower end of the mission time spectrum. For lower probability scenarios 
(0.1), none reached an optimal solution within 3600 seconds, while the difference in distributions for 0.3 
and 0.5 probabilities is not markedly significant. Additionally, the distribution of cases across different 
vehicle counts is relatively even, suggesting no clear correlation between the number of vehicles and the 
instances where solutions were not found within the set time frame. 

 

Figure 9. Scatter plots for the solution time of larger problem instance 

Figure 10  presents the correlation between expected information collection and three mission parameters. 
For shorter missions, a broader range of expected information collection values is observed, while longer 
missions tend to show more clustering towards higher values. In terms of detection limitations, the results 
indicate that higher detection probability limits may not always result in substantially increased information 
collection, possibly due to other mission parameter limitations or operational constraints. Regarding fleet 
size, although larger fleets raise the minimum expected information collection, the relationship is not 
distinctly linear, suggesting that increasing fleet size does not uniformly enhance information collection. 

 

Figure 10. Scatter plots for the expected collected information of larger problem instance 

4.6 Discussions 

The case study, MO in the context of UAV operations for border patrolling in Türkiye, show the effectiveness 
of the model in addressing high and low-level decision problems during practical-sized UAV border 
patrolling operations. It provides optimal recommendations and reveals trade-offs among mission success 
(information collection), mission safety (radar threat), and mission duration (flight duration) in 18 minutes 
on average (with a median of 5) over 210 runs with different parameter combinations.  

Innovation productivity, at its core, is about maximizing the output and value derived from innovative 
activities, and the effective conversion of new ideas into practical, value-adding applications. In the case, 
the application of MO in UAV operations highlights this motivation. By optimizing the UAV routes and 
strategies, MO not only improves the operational efficiency but also contributes to the broader objective of 
enhancing the productivity of the innovation. The ability to quickly analyze and determine optimal solutions 
in complex scenarios of innovative products, like UAV border patrolling, increases productivity in the 
innovation lifecycle. Decision makers can collect more relevant and higher-quality data in less time, which 
can then be analyzed to derive valuable insights. In applications like search and rescue or disaster 
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management, optimized UAV missions can result in quicker response times. Over time, consistent 
optimization accumulates valuable operational experience and data, which can be used for ongoing 
research and development. This, in turn, leads to better UAV technology and more effective mission 
planning tools, fostering long-term innovation and increased productivity in the UAV industry. The 
proficiency of the model in optimizing a mission consideration can lead to benefits in others. For instance, 
optimizing for mission duration not only saves time but also potentially increases the frequency of missions, 
thereby amplifying the overall output of the UAV system. To sum up, optimizing UAV missions streamlines 
operations, cuts costs speeds up data collection, and ultimately results in more successful and productive 
outcomes. 

5. CONCLUSION 

The primary motivation behind a productive innovation is to achieve equal or greater output while utilizing 
the same or fewer resources, thereby generating added value. At each stage of the innovation process, 
design problems arise, and efficiently addressing these challenges can significantly boost innovation 
productivity. 

In the current era of digital transformation, analytical approaches are being incorporated into the design 
problems in innovation management. One such candidate is MO, which is a rapidly growing field within AI 
that is often underestimated. Despite its long history, MO's impact has recently increased with the 
advancement of computing technology. What sets MO apart from popular fields like machine learning is its 
ability to provide optimal recommendations for design problems, guaranteeing their optimality. By 
leveraging MO methodologies in conjunction with powerful solver technologies, the limitations such as 
scalability, automation, and the complexity of learning that humans often face can be eliminated. 

In this paper, utilization of MO for enhancing innovation productivity is explored. A framework is introduced 
for integrating MO into the design processes of innovation management. Additionally, a case study that 
exemplifies the practical application of MO in the utilization of a UAV fleet for border patrolling in Türkiye is 
presented. In the case study, particularly focusing on UAV operations for border patrolling in Türkiye, the 
substantial role of MO in boosting innovation productivity is demonstrated. MO’s application extends 
beyond UAV operations, offering broad potential in enhancing the productivity of diverse innovation 
processes. MO effectively optimizes product design and development, aligning features and specifications 
with customer needs while controlling costs, thereby expediting innovation cycles. It also enhances 
resource allocation efficiency, maximizing the return on investment and reducing wastage. In decision-
making, MO delivers swift and optimal recommendations, shortening the transition from concept to 
execution and improving process efficiency. Furthermore, MO plays a crucial role in managing risks and 
uncertainties inherent in innovation, providing stability through scenario modeling. Additionally, MO 
facilitates continuous improvement, adapting to new data and insights for more effective solutions. 
Ultimately, MO's capacity to streamline various innovation aspects significantly reduces time to market, 
offering a competitive edge and reinforcing the productivity of the entire innovation cycle. 

In Türkiye, innovation is as a key government policy, especially in the realm of technological advancement. 
The country focuses on developing products and services that can compete effectively on the global market. 
A prime example of this is Türkiye’s significant progress in the development and deployment of UAVs, with 
notable vehicles like Bayraktar TB2, Anka, TAI ANKA, and Vestel Karayel. These advancements places 
Türkiye at the forefront of this competitive field. Furthermore, Türkiye has initiated the production of EV 
equipped with autonomous driving capabilities and other intelligent solutions through TOGG. The scope of 
innovation extends beyond technology to include processes and services. Recently, the Turkish national 
space program was unveiled, underscoring the commitment to space exploration. In the world of e-
commerce and food delivery platforms, Türkiye stands out as one of the most competitive nations. 
Furthermore, significant innovations have been achieved in the realm of digital healthcare services, evident 
in platforms like E-nabız and e-prescription. Therefore, integration of MO into innovation initiative’s in 
Türkiye provides a significant potential for innovation productivity. 

The paper focuses on the potential of MO in enhancing innovation productivity, but there are still challenges 
that require further investigation and research. Many questions remain unanswered. One key question is 
the applicability of MO in triggering innovation. While MO is widely accepted in management areas, its use 
in pre-innovation stages is not yet well understood. Another question is about the availability of resources 
for a MO integration. Are MO-led design processes applicable in any industry or company, or are there 
limiting factors such as the availability of experts, suitable software, and the right organizational culture? 
Are these necessary resources available at reasonable costs, particularly in the context of Türkiye? 
Furthermore, integrating MO into design practice poses the challenge of determining the role of decision 
makers. With the availability of powerful computing, decision makers will no longer need to manually find 
solutions to problems. Instead, their role will shift towards understanding the significance of innovation 
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problems, defining design problems, formulating them, and translating them into computer-based models. 
This shift may necessitate a reconsideration of innovation processes, organizational structures, and 
problem-solving approaches. While MO holds significant potential, these questions remain unanswered, 
and further exploration is needed to fully comprehend the implications and practical implementation of MO 
in innovation processes. 
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