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Highlights 

• Two Bayesian models were proposed to estimate the confidence interval of the Weibull modulus. 

• The Weibull modulus is an important problem in the fracture strength modeling. 

• The Bayesian models were based on the prior of increasing failure rates of all most materials. 

• This prior argument requires the Weibull modulus to be more than 1 due to wear-out failure. 

Article Info 

 

Abstract 

Estimating the confidence interval of the Weibull modulus is an important problem in the fracture 

strength modeling of ceramic and composite materials. It is particularly important in cases where 

the sample size is small due to high experimental costs. For this purpose, several classical 

methods, including the popular maximum likelihood method, and Bayesian methods have been 

developed in the literature. However, studies on Bayesian inference have remained very limited 

in the materials science literature. Recently a Bayesian Weibull model has been proposed for 

estimating confidence lower bounds for Weibull percentiles using the prior knowledge that the 

failure rates are increasing. This prior argument requires the Weibull modulus to be more than 1 

due to wear-out failure. In this study, under the same prior information, two Bayesian Weibull 

models, one using the same prior argument and the other a relaxed version of it, have been 

developed for confidence interval estimation of the Weibull modulus. Their estimation 

performances have been compared against the maximum likelihood method with Monte Carlo 

simulations. The results show that the Bayesian Weibull models significantly outperform the 

maximum likelihood method for almost all Weibull modulus and sample size values. 
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1. INTRODUCTION 

 

Weibull distribution [1] is a well-established characterization tool in the field of modeling failure times and 

analyzing the mechanical properties of ceramic and composite materials, such as fracture strength of 

ceramics, metallic matrix composites and ceramic matrix composites [2], flexural strength of brittle 

materials [3], fracture toughness behavior of steels in ductile-brittle transition region [4]. 

 

The two-parameter Weibull distribution is generally recommended for characterizing ceramic and 

composite material properties [4]. Let 𝑇 denote a Weibull random variable modeling the strength of a 

material. Then 𝑇 has the following probability density function with parameters 𝜎0 and 𝑚: 

 

𝑓(𝑡) =
𝑚

𝜎0
(

𝑡

𝜎0
)

𝑚−1

𝑒
−(

𝑡
𝜎0

)
𝑚

 (1) 

 

where 𝜎0 > 0 and 𝑚 > 0 are the scale and shape parameters, respectively. The shape parameter is 

alternatively referred to as the Weibull modulus. Weibull modulus is used as a measure of the variability of 

the strength of materials [4] or as a measure of component reliability and system reliability [5]. 
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The cumulative distribution function, 𝐹(𝑡), giving the probability of fracture at a stress level 𝑡 is expressed 

as Equation (2), where reliability function 𝑅(𝑡) = 𝑒
−(

𝑡

𝜎0
)

𝑚

. 

 

P(𝑇 ≤ 𝑡) = 𝐹(𝑡) = 1 − 𝑅(𝑡) = 1 − 𝑒
−(

𝑡
𝜎0

)
𝑚

     (2) 

 

In practice, high experimental costs limit the number of samples to be tested; and in general, as the sample 

size decreases, the statistical inferences for Weibull modulus (𝑚) becomes worse, because the precision 

and the biasing (the coefficient of variation) of the Weibull estimators increase as the sample size decreases 

for any method [6-8], In addition, Khalili and Kromp [9] showed the coefficient of variation as a function 

of the inverse square root (1 𝑛
1

2⁄⁄ ). Therefore, for small sample sizes, new estimation methods or models 

with better statistical inferences are needed to be investigated. 

 

In general, Bayesian methods have superior performance over classical ones for small samples. There are 

many studies on the estimation of the Weibull modulus (𝑚) using classical and Bayesian inference 

methods; however Bayesian studies in the materials science literature are very limited. A previous study 

[6] proposed a Bayesian estimation model for confidence intervals of Weibull lower percentiles specifically 

designed for material science applications, and showed that it outperforms alternative classical methods for 

small sample sizes. The Bayesian model defines a prior distribution suitable for material science 

applications and generally applicable to any brittle material without any specific knowledge. The basic 

prior argument in the study is that ceramic and composite materials have increasing failure rates, which 

requires 𝑚 to be greater than 1.  

 

In reliability analysis increasing failure rates typically refer to the wear-out period in a bathtub curve, 

indicating late life of a product. Usually decreasing and constant failure rates are also observed in earlier 

periods in a product’s life cycle. The random variable T is the failure time in such product-life cycle 

applications. In materials science applications, however, T denotes strength measurements. For increasing 

failure rates, the fracture probability increases by increasing pressure levels of 𝑡, which is normally expected 

for all brittle materials. Theoretical studies in materials science show that strength distribution of carbon 

fibers and fibrous composite materials exhibit increasing failure rates [10-12], and Yalcinkaya and Birgoren 

[13] discusses why increasing failure rates should also apply to ceramics: Increasing failure rates require 

𝑚 > 1, which explains the lower limit of the uniform prior. As for the upper limit, a value of 100 indicates 

an amount of variability that is negligibly small for most practical purposes. Estimated values for existing 

materials also support this upper limit: For metals such as aluminum and steel, and metal alloys, 𝑚 is around 

100 [14, 15]. For traditional ceramics (e.g. brick, pottery, chalk etc), 𝑚 is between 1 and 3 [14, 15]; for 

engineered ceramics (e.g. SiC, Al2O3, Si3N4) it is between 5 and 10 [14, 15]. 

 

Motivated by this recent result [13], the two Bayesian models have been proposed, one using the same prior 

argument and the other a relaxed version of it, for confidence interval estimation of 𝑚 and their 

performances have been assessed against the maximum likelihood method, which is the most frequently 

used one among classical estimation methods. The first Bayesian model uses a Uniform prior distribution 

with limits (1, 100) for 𝑚 and the non-informative Jeffrey’s prior for the Weibull scale parameter (𝜎0). In 

theory, 𝑚 values can range from 0 to ∞, but experimental and theoretical studies in materials science 

support these uniform prior limits.  The first model strictly constrains 𝑚 in the interval (1, 100), which may 

be argued to be valid for most materials, but certainly not all materials. The second model assigns a nonzero 

probability 1 − 𝛼 to the event that 𝑚 is in (1, 100). A prior distribution can be elicited for 𝑚 by following 

the steps of a maximal entropy hash (MEH) prior elicitation method, which will be explained in later. MEH 

priors encompass the standard maximal entropy (ME) priors and the maximal data information (MDI) priors 

in order to increase their chances of being proper [16]. For 𝜎0, the non-informative Jeffrey’s prior has been 

used, as in the first Bayesian model. 

 

In the first step of this study, credible interval (for Bayesian inference) and confidence interval (for classical 

inference) estimation algorithms have been developed based on the maximum likelihood (MLE) method 

and the two Bayesian Weibull (BW) models (using Uniform (1, 100) & Jeffrey’s priors and MEH & 
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Jeffrey’s priors). In the second step, Monte Carlo simulations have been designed and run in the C++ 

language for the comparisons with large simulation run numbers. Small sample sizes between 3 and 20 

have been used in the simulations. 

 

In the literature, many authors have proposed various estimation methods for the Weibull parameters and 

their confidence intervals for complete and censored data. The handbooks [17-22] provide a recent detailed 

discussion of classical and Bayesian methods. MLE [20], Linear Least Squares (LLS) [21], and Weighted 

Linear Least Squares (WLLS) [22-24] are among the popular classical estimation methods. The most 

common estimation method is the MLE; see Nelson [25], Johnson et al. [26], Murthy et al. [27], and Dodson 

[19] for a detailed discussion.  

 

In the materials science literature, statistical inferences of the estimators and confidence intervals for 𝑚 

have been studied extensively using classical methods [2-6, 9, 20-24, 28-37]. Among these studies, Gong 

[31] introduced a new probability index for point and interval estimation of 𝑚 for ceramics with an LLS 

method. In addition, McCool and Phan [38] proposed a simple method based on Menon’s original work 

[39] for estimating exact confidence intervals of 𝑚 and characteristic strength. McCool [40] developed a 

program for creating pivotal tables according to user-entered percentage and sample volume information 

for point and interval estimation of 𝑚 and percentiles. Bütikofera et al. [41] compared point estimates and 

95% confidence intervals for 𝑚 by two LLS methods. They called conventional LLS methods as YonX 

methods, and proposed the XonY method by interchanging the axes in the least squares analysis.  

 

While there are major differences among classical methods, Bayesian methods basically use the same 

formulation, as will be discussed later; they differ only by the choice of the prior distribution of the 

parameters [17,18]. In the general scientific literature, there are many Bayesian point estimation studies on 

𝑚, see for example [42-47]; however Bayesian interval estimation studies are limited, see Aron et al. [48] 

as an example. The details of Bayesian Weibull analysis can be found in [49]. In the materials science 

literature, there is only one study on Bayesian interval estimation for the Weibull modulus: Simoa et al. 

[50] proposed a new Bayesian method for determination of strength and crack growth using fatigue data 

from previous tests as prior information. The remaining studies in materials science are generally based on 

point estimation of 𝑚 for multiple purposes, such as investigating size effect of materials under different 

operational conditions [51] or understanding the statistical behavior of the strength of materials [52].  

 

In this study, the two proposed BW models do not require any past data, and make use of the information 

that the Weibull modulus is more than 1 and less than 100, which is considered a proper upper value for 

brittle materials. MEH priors developed by Bousquet [16] encompass the ME and the MDI priors for 

eliciting a proper prior. In Bayesian inference, the ME and the MDI priors have been studied by Zellner 

[53-55], Berger [56] and Soofi [57], among many others. The interested reader is also referred to Skilling 

[58], Zellner [55], Le Besnerais et al. [59], Soofi [60], Miller and Yan [61]. 

 

2. MATERIAL METHOD 

 

2.1. Estimation of Confidence Bounds for Weibull Modulus 

 

The Weibull modulus, 𝑚, has been recently used as a measure of the variability of the strength, 

the mechanical reliability or the probability of failure of materials [62-64]. A higher Weibull modulus (𝑚 >
20) indicates a narrower distribution of failure strengths, and, therefore, a more reliable material such that 

failure occurs in a more predictable and controlled manner. A material characterized by a low Weibull 

modulus has a broad distribution of failure strengths and exhibits low predictable failure behavior. Since 

Weibull modulus characterizes the shape of the failure probability curve, it is used as a strength reliability 

parameter in materials science and has to be estimated accurately for performing a successful reliability 

analysis. 

 

Weibull modulus can be estimated using classical and Bayesian inferences. For both inferences, the 

estimates of 𝑚 , 𝑚̂, can be quite unreliable, especially in small samples. Therefore, instead of 𝑚̂ values, 

confidence bounds for 𝑚 have been used for the characterization of mechanical properties [62-64]. 
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Confidence intervals are called credible intervals in the parlance of Bayes’ theory. Credible intervals of 

parameters and functions of parameters are calculated from posterior distributions in Bayesian inference 

[65]. 

 

2.2. Maximum Likelihood Method 

 

The maximum likelihood estimation (MLE) is a method of estimating the parameters of a probability 

distribution by maximizing a likelihood function. Using the density of 𝑓(𝑡), as defined in Equation (1), the 

likelihood function for the Weibull distributed independent data observations 𝑇1, 𝑇2, … , 𝑇𝑛  can be written 

as 

 

 𝐿(𝑚, 𝜎0) = 𝐿(𝑡1, 𝑡2, … , 𝑡𝑛, 𝑚, 𝜎0) = ∏ 𝑓(𝑡𝑖; 𝑚, 𝜎0)

𝑛

𝑖=1

= 𝑚𝑛 𝜎0
𝑛 𝑡1

𝜎0−1
𝑡2

𝜎0−1
…  𝑡𝑛

𝜎0−1
 𝑒−𝑚 ∑ 𝜎𝑖

𝜎0𝑛
𝑖=1 . (3) 

 

The likelihood function in Equation (3) can be maximized by taking logarithms of it (Equation (4)), 

differentiating with respect to 𝑚 and 𝜎0 and equating to zero, 𝑑𝑙(𝑚, 𝜎0) 𝑑𝑚⁄ = 0 and  𝑑𝑙(𝑚, 𝜎0) 𝑑𝜎0⁄ = 0: 

 

𝑙(𝑚, 𝜎0) = 𝐼𝑛𝐿(𝑚, 𝜎0) = 𝑛𝐼𝑛𝑚 − 𝑛𝐼𝑛𝜎0 + (𝑛 − 1) ∑ 𝐼𝑛
𝑡𝑖

𝜎0

𝑛
𝑖=1 − ∑ 𝐼𝑛 (

𝑡𝑖

𝜎0
)

𝑚
 𝑛

𝑖=1 . (4) 

 

The estimating equations maximizing 𝑙(𝑚, 𝜎0) are shown in the set of Equation (5) and (6) and the solution 

set of these equations is called the maximum likelihood estimator of 𝑚̂ ve 𝜎̂0 [66] 

 

𝑛

𝑚̂
− 𝑛𝐼𝑛𝜎̂0 + ∑ 𝐼𝑛(𝑡𝑖)

𝑛

𝑖=1

− ∑ (
𝑡𝑖

𝜎̂0
)

𝑚̂

𝐼𝑛 (
𝑡𝑖

𝜎̂0
)

𝑛

𝑖=1

 

 

(5) 

𝜎̂0 = (
∑ (𝑡𝑖)𝑚̂𝑛

𝑖=1

𝑛
)

1 𝑚̂⁄

 (6) 

 

where 𝑡1, 𝑡2, … , 𝑡𝑛 are an observed sample of size 𝑛. The Newton-Raphson method is usually employed for 

solving Equation (5) for 𝑚̂. Then, 𝜎̂0 is found by substituting 𝑚̂ into Equation (6). Thoman [67] showed 

that 𝑚̂ 𝑚⁄  is a pivotal variable, that is, independent of 𝜎0 and 𝑚. The distribution of 𝑚̂ 𝑚⁄  can be found for 

a given 𝑛 and 𝛼 value by Monte Carlo simulation. Since the pivotal statistic 𝑚̂ 𝑚⁄   has the same distribution 

with 𝑚, 𝑚̂ can be used instead of 𝑚̂ 𝑚⁄  in Equation (7) and then Equation (8) is obtained 

 

𝑃 ( 𝑑1−𝛼 2⁄ <
𝑚̂

𝑚
< 𝑑𝛼 2⁄ ) = 1 − 𝛼 

 

(7) 

𝑃 ( 
𝑚̂

𝑑𝛼 2⁄
< 𝑚 <

𝑚̂

𝑑1−𝛼 2⁄
) = 1 − 𝛼  . 

(8) 

 

The upper and lower bounds, respectively 𝑑1−𝛼 2⁄   and 𝑑𝛼 2⁄  , are obtained by simulation of 𝑚̂. 

 

 

2.3. The Bayesian Weibull (BW) Models 

 

Bayesian estimation inference makes use of one’s prior knowledge about the parameters as well as the 

useable data. When any prior knowledge about the parameter is not available, it is possible to make use of 

the non-informative priors in Bayesian analysis [45]. In this article, Bayesian inference is applied to 

estimating the parameters of Weibull distribution assuming a prior knowledge about 𝑚 exists. 
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Applying Bayes' rule [68] on the 2-parameter Weibull distribution and assuming the prior distributions of  

𝑚 and 𝜎0  are independent, the following posterior distribution is expressed as 

 

𝑃(𝑚, 𝜎0|𝑻) =
𝐿(𝑚, 𝜎0) 𝑃(𝑚) 𝑃(𝜎0)

∫ ∫ 𝐿(𝑚, 𝜎0) 𝑃(𝑚) 𝑃(𝜎0) 𝑑𝜎0 𝑑𝑚
∞

0

∞

0

 (9) 

 

where 𝑃(𝑚, 𝜎0|𝑻) is the posterior distribution of 𝑚 and 𝜎0,  𝐿(𝑚, 𝜎0) = P(𝑻| 𝑚, 𝜎0) = ∏ 𝑓(𝑡𝑖; 𝑚; 𝜎0)𝑛
𝑖=1  

is the likelihood function of the data given 𝑚 and 𝜎0, 𝑃(𝑚) and 𝑃(𝜎0) are the prior distributions of 𝑚 and 

𝜎0, respectively. The double integrals in Equation (9) have no closed forms, since Weibull shape and scale 

parameters are treated as random variables having prior distributions. Thus, to get the estimators 

analytically based on the formulations is impossible, and some numerical integration methods, such as 

trapezoid rule and Simpson's rule, are needed to calculate the estimators [49]. For more information about 

numerical integration methods, see “Applied Mathematics for Science and Engineering”, Chapter 4 

“Numerical Quadrature” [69]. In this study, trapezoid integration rule was used for solving the double 

integrals. 

 

After deriving the posterior distribution 𝑃(𝑚, 𝜎0|𝑻), the marginal posterior probability 𝑃(𝑚|𝑻) of 𝑚  is 

determined by summing the posterior probabilities across the alternative values for 𝜎0 and the credible 

interval of 𝑚 is calculated based on 𝑃(𝑚|𝑻). At a given confidence level 𝑎, the two-sided credible intervals 

can be calculated by solving Equation (10) for 𝑚 with trapezoid integration rule: 

 

∫  𝑃(𝑚|𝑻) 𝑑𝑚 =
𝑚𝑢𝑝𝑝𝑒𝑟

𝑚𝑙𝑜𝑤𝑒𝑟
∫ ∫  𝑃(𝑚, 𝜎0|𝑻)  𝑑𝜎0 𝑑𝑚 =

∞

0

𝑚𝑢𝑝𝑝𝑒𝑟

𝑚𝑙𝑜𝑤𝑒𝑟
1 − 𝛼. (10) 

 

If the marginal posterior density of 𝑚, 𝑃(𝑚|𝑻) = ∫ 𝑃(𝑚, 𝜎0|𝑻)𝑑𝜎0,
∞

0
 is unimodal, then for a given value 

of 𝛼, the shortest credible interval for 𝑚 is given by 𝐶𝐼 = {𝑚: 𝑃(𝑚|𝑻) ≥ 𝑘} where 𝑘 is the largest number 

so that ; 

 

∫  𝑃(𝑚|𝑻)𝑑𝑚
{𝑚:𝑃(𝑚|𝑻)≥𝑘}

= ∫  ∫  𝑃(𝑚, 𝜎0|𝑻)  𝑑𝜎0 𝑑𝑚 = 1 − 𝛼
∞

0{𝑚:𝑃(𝑚|𝑻)≥𝑘}
. (11) 

 

The credible set described in Equation (11) is called a highest posterior density interval (HPD), as it consists 

of the values of the parameter for which the posterior density is the highest. An HPD interval has the shortest 

width among all other credible intervals. When the marginal distribution of the interest of parameter is not 

symmetric, a 100(1 − 𝛼)% HPD interval is more desirable. In this context, the HPD interval is 

more appropriate for 𝑚 of which the marginal posterior distribution has been proven to be not symmetric 

by the simulations in this study. For a recent detailed discussion of HPD credible intervals, see [70].  

 

2.4. Priors and Algorithms for the BW Models  

 

As mentioned before, using the prior argument based on increasing failure rates of materials, two Bayesian 

Weibull models have been proposed for credible intervals of 𝑚 in this study.  

 

 

 

BW1 Model: 𝑚~Uniform (1,100) & 𝜎0~Jeffrey’s prior 

 

The first Bayesian model (BW1) in Equation (12) assumes that the Weibull modulus has a uniform prior 

on the interval of (1, 100) as discussed before. It is also assumed that there is no prior knowledge about the 

scale parameter, so the Jeffrey’s prior is chosen for 𝜎0 as it is non-informative, using only the information 

in a sample. The uniform distribution implies that any Weibull modulus value is equally likely in the 

interval (1, 100). An expert may specify a narrower interval, and even change the distribution. However, in 

materials testing, whereabouts of the Weibull modulus can hardly be known before actually conducting the 

tests. Because, in cases of where a Weibull material has such characteristic properties as relative flaw 
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density, fracture origins, internal stress fields, gradients, toughness etc., a deviation from Weibull behavior 

is identified and so 𝑚 becomes stress-dependent [71]. An interval of (1, 100), on the other hand, will be 

valid for most, if not all, ceramics and composite materials, and hence eliminate any need for an expert 

opinion for a specific material.  

 

𝑓(𝑚, 𝜎0|𝑇) = =  
∏ 𝑓(𝑡𝑖; 𝑚; 𝜎0)𝑛

𝑖=1  𝑈𝑛𝑓(𝑚; 1,100)   1 𝜎0⁄

∫ ∫ ∏ 𝑓(𝑡𝑖; 𝑚; 𝜎0)𝑛
𝑖=1  𝑈𝑛𝑓(𝑚; 1,100)  1 𝜎0⁄     𝑑𝜎0 𝑑𝑚

∞

0

∞

0

                                (12) 

 

BW2 Model: 𝑚~MEH (𝛾0 ≅ 0.70) & 𝜎0~Jeffrey’s prior 

 

A uniform distribution on the (1, 100) interval imposes strong constraints for the prior probability of 𝑚: the 

probability that 𝑚 < 1 and 𝑚 > 100 is zero. The second Bayesian model (BW2) assumes 

𝑃(1 < 𝑚 < 100) = 1 − 𝛼, which provides a relaxation. Under this assumption, an MEH prior distribution 

is elicitied by the MEH elicitation method. MEH prior encompasses the ME priors and the MDI priors 

when there is no prior information or when little expert knowledge is considered only. The MEH prior 

distribution of 𝑚 is given in Equation (13);  
 

𝑃𝑀𝐸𝐻(𝑚) = 𝑚−1  𝑒𝑥𝑝(− 𝛾0𝛾 𝑚⁄ )  Γ𝛾0(1 𝑚⁄ )⁄        , 𝛾0 > 0, 𝑚 > 0 (13) 

 

where 𝛾0 is the shape parameter, 𝛾 is the Euler constant (𝛾 ≅ 0.57721) and Γ(. ) is the gamma function.  

 

In the first step for the MEH elicitation method, an expert gives a range for 𝑚 under a probability 1 − 𝛼 

and the value of 𝛾0 is searched to satisfy Equation (14). In the second step, the MEH prior distribution is 

elicited by replacing Equation (13) with the result value of 𝛾0. In addition, by combining descent methods 

(such as Newton–Raphson) and Monte Carlo methods, numerous MEH prior distributions for the Weibull 

modulus can be derived, assessing a range of values for 𝛾0. See [16] for a detailed discussion of MEH prior 

and elicitation method: 

 

𝑃(𝑚𝑙𝑜𝑤 < 𝑚 < 𝑚𝑢𝑝) =
∫ 𝑚−1  𝑒𝑥𝑝(−𝛾0𝛾 𝑚⁄ )  Γ𝛾0(1 𝑚⁄ )⁄

𝑚𝑢𝑝
𝑚𝑙𝑜𝑤

𝑑𝑚

∫ 𝑚−1  𝑒𝑥𝑝(−𝛾0𝛾 𝑚⁄ )  Γ𝛾0(1 𝑚⁄ )⁄
∞

0
𝑑𝑚

= 1 − 𝛼   . (14) 

 

In this study, [𝑚𝑙𝑜𝑤, 𝑚𝑢𝑝] = [1,100]. However, no parameter value for 𝛾0, can be found for high 

probabilities such 0.80 and 0.90 for this interval. This is a disadvantage of this prior distribution, while it is 

very practical for its simple, one-parameter construct. In this study, a high value for 1 − 𝛼 is desirable, thus, 

a value of 𝛾0 is searched to maximize 1 − 𝛼 in Equation (14). The Figure 1 is obtained by plotting Equation 

(14) for different 𝛾0 values for the (1, 100) interval. A maximum probability of 1 − 𝛼 = 0.66 is obtained 

for 𝛾0 ≅ 0.70. Therefore, the desired MEH prior is as follows: As in BW2, the Jeffrey’s prior is chosen for 

𝜎0: 

 

𝑃𝑀𝐸𝐻(𝑚) = 𝑚−1  𝑒𝑥𝑝(− 0.7 𝛾 𝑚⁄ )  Γ𝛾0(1 𝑚⁄ )⁄     .    (15) 

 

 

 

After obtaining 𝑃𝑀𝐸𝐻(𝑚), the BW2 model has the following posterior distribution function: 

 

𝑓(𝑚, 𝜎0|𝑇) =   
∏ 𝑓(𝑡𝑖; 𝑚; 𝜎0)𝑛

𝑖=1  𝑚−1  𝑒𝑥𝑝(− 0.7 𝛾 𝑚⁄ )  Γ𝛾0(1 𝑚⁄ )⁄    1 𝜎0⁄

∫ ∫ ∏ 𝑓(𝑡𝑖; 𝑚; 𝜎0)𝑛
𝑖=1  𝑚−1  𝑒𝑥𝑝(− 0.7 𝛾 𝑚⁄ )  Γ𝛾0(1 𝑚⁄ )⁄   1 𝜎0⁄  𝑑𝜎0 𝑑𝑚

∞

0

∞

0

  .  

 

(16) 
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Figure 1. 𝑃(1 < 𝑚 < 100) for different 𝛾0 values 

 

3. MONTE CARLO SIMULATION STUDY 

 

3.1. Simulation Inputs  

 

An extensive Monte Carlo simulation has been performed to compare the performances of the MLE, BW1 

and BW2 models. Figure 2 shows the flowchart of the simulation procedure implemented in C++.  

 

 
Figure 2. Flow chart of the simulation procedure 

 

In the simulation, 𝜎0 is a fixed at 𝜎0 = 1, since it has no effect on the results.  For each set of given sample 

size and the prescribed Weibull modulus, 𝑅 = 10000 intervals are estimated using the methods described 

in the experimental section. The reason for selecting the small 𝑚 values in Figure 2 is to examine the effect 

of the shape of the Weibull probability density function, which is positively skewed for 𝑚 < 2.6, 

approximates the normal pdf for 2.6 < 𝑚 < 3.7  and is negatively skewed for 𝑚 > 3.7 [49]. 
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3.2. Comparison Criterion: Median Interval Length  

 

In this study, median interval length is chosen for comparing the performances of MLE and BW methods. 

The median statistic is more representative of the central tendency due to the asymmetry of the distribution 

of 𝑚̂ for most classical methods [9]. For Bayesian methods, the obtained  𝑚̂ distributions in this study have 

verified the existence of asymmetry. However, median interval lengths cannot be compared without 

considering simulation errors. The replication number 𝑅 = 10000 is quite a large number considering 

computationally expensive Bayesian methods; yet, it still produces a significant simulation error. 

Simulation errors will be quantified by constructing confidence intervals for the median interval length. Let 

𝑍1, … , 𝑍𝑅 be estimated interval lengths from a simulation of 𝑅 replications for a particular 𝑛 and 𝑚. Also 

let 𝑍(1) ≤ ⋯ ≤ 𝑍(𝑅) denote the associated order statistics, and 𝑍̃ denote the associated sample median. A 

95% confidence interval for the true median 𝜇̃𝑍 is (𝑍(𝑙1), 𝑍(𝑢1)), where [72] 

 

𝑙1 = [(0.5)𝑅 − 1.96√(0.5)2𝑅 + 0.5] & 𝑢1 = [(0.5)𝑅 + 1.96√(0.5)2𝑅 + 1.5]. (17) 

 

3.3. Simulation Results  

 

A detailed summary of the simulation results is presented in Tables 1-2 for each 𝑛 and 𝑚 according to the 

95% confidence intervals of 𝜇̃𝑍 in Equation (17). The results are also shown graphically in Figures 3 and 

4. In Table 3, for each 𝑛 and 𝑚, the result of the best method, that is the shortest interval length, is shown 

in bold and the second best method is shown underlined and italic. In some cases, two methods are shown 

to be best methods at the same time due to intersecting confidence intervals, which indicates that there is 

no statistically significant difference between the true medians (𝜇̃𝑍). 
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Table 1. Estimated Interval Lengths for Weibull Modulus (𝑚) for 𝑛=3, 4, 5, 6 and 7 

𝒏 𝒎 

MLE BW1 BW2 

𝑍 95% CI of 𝜇𝑍  𝑍 95% CI of 𝜇𝑍  𝑍 95% CI of 𝜇𝑍 

3 1.5 3.720  (3.701, 3.738) 3.557  (3.512, 3.622) 2.910  (2.867, 2.951) 

3 2 4.978  (4.952, 5.001) 4.852  (4.776, 4.946) 3.838  (3.789, 3.894) 

3 2.5 6.185  (6.156, 6.218) 6.261  (6.149, 6.372) 4.799  (4.735, 4.868) 

3 3 7.462  (7.426, 7.498) 7.646  (7.511, 7.736) 5.715  (5.624, 5.795) 

3 4 9.913  (9.857, 9.963) 10.459  (10.286, 10.652) 7.612  (7.511, 7.735) 

3 5 12.398  (12.34, 12.459) 13.062  (12.87, 13.27) 9.355  (9.211, 9.486) 

3 10 24.850  (24.737, 24.97) 26.462  (26.04, 26.859) 18.381  (18.123, 18.639) 

3 20 49.499  (49.258, 49.737) 53.943  (53.013, 54.783) 36.991  (36.384, 37.632) 

3 40 99.411  (98.936, 99.863) 72.256  (72.029, 72.441) 71.898  (70.902, 72.886) 

3 60 148.569  (147.845, 149.261) 72.549  (72.378, 72.747) 108.077  (106.386, 111.164) 

3 80 199.439  (198.412, 200.454) 70.342  (70.17, 70.499) 145.418  (143.286, 146.866) 

4 1.5 2.915  (2.903, 2.926) 2.612  (2.566, 2.65) 2.446  (2.417, 2.476) 

4 2 3.895  (3.879, 3.909) 3.695  (3.642, 3.75) 3.297  (3.254, 3.338) 

4 2.5 4.878  (4.86, 4.897) 4.790  (4.712, 4.865) 4.119  (4.072, 4.166) 

4 3 5.861  (5.839, 5.881) 5.976  (5.911, 6.06) 5.014  (4.953, 5.068) 

4 4 7.772  (7.742, 7.801) 8.073  (7.972, 8.177) 6.608  (6.546, 6.688) 

4 5 9.734  (9.695, 9.771) 10.186  (10.093, 10.303) 8.305  (8.207, 8.397) 

4 10 19.510  (19.439, 19.581) 20.296  (20.059, 20.568) 16.541  (16.355, 16.749) 

4 20 38.835  (38.674, 38.989) 40.905  (40.506, 41.385) 33.349  (32.971, 33.792) 

4 40 78.164  (77.899, 78.47) 66.403  (66.166, 66.663) 66.475  (65.705, 67.296) 

4 60 116.602  (116.169, 117.013) 67.472  (67.29, 67.68) 100.313  (98.003, 102.123) 

4 80 155.602  (154.992, 156.125) 64.329  (64.089, 64.517) 131.289  (129.999, 132.689) 

5 1.5 2.470  (2.462, 2.478) 2.173  (2.152, 2.202) 2.182  (2.158, 2.206) 

5 2 3.289  (3.279, 3.299) 3.085  (3.049, 3.124) 2.909  (2.877, 2.944) 

5 2.5 4.126  (4.112, 4.139) 4.099  (4.054, 4.148) 3.701  (3.655, 3.737) 

5 3 4.920  (4.904, 4.937) 5.019  (4.974, 5.07) 4.429  (4.395, 4.469) 

5 4 6.592  (6.57, 6.613) 6.743  (6.682, 6.798) 5.894  (5.838, 5.945) 

5 5 8.213  (8.185, 8.237) 8.458  (8.366, 8.551) 7.365  (7.287, 7.439) 

5 10 16.441  (16.386, 16.491) 17.066  (16.93, 17.271) 14.982  (14.833, 15.113) 

5 20 32.963  (32.866, 33.076) 33.929  (33.648, 34.293) 29.666  (29.45, 29.956) 

5 40 65.823  (65.611, 66.059) 61.285  (60.915, 61.583) 59.558  (58.967, 60.172) 

5 60 98.623  (98.303, 98.943) 63.706  (63.499, 63.889) 90.950  (90.45, 91.367) 

5 80 131.510  (131.068, 131.953) 60.164  (59.903, 60.389) 118.539  (117.608, 119.479) 

6 1.5 2.185  (2.18, 2.191) 1.893  (1.869, 1.912) 1.975  (1.958, 1.993) 

6 2 2.911  (2.903, 2.919) 2.762  (2.731, 2.795) 2.664  (2.639, 2.686) 

6 2.5 3.647  (3.636, 3.658) 3.667  (3.628, 3.705) 3.378  (3.348, 3.407) 

6 3 4.355  (4.342, 4.367) 4.433  (4.386, 4.48) 4.030  (3.986, 4.065) 

6 4 5.812  (5.797, 5.83) 5.955  (5.897, 6.021) 5.390  (5.338, 5.455) 

6 5 7.260  (7.241, 7.28) 7.444  (7.375, 7.526) 6.733  (6.662, 6.801) 

6 10 14.548  (14.51, 14.592) 15.065  (14.945, 15.201) 13.647  (13.51, 13.75) 

6 20 29.135  (29.054, 29.221) 29.849  (29.618, 30.096) 27.115  (26.854, 27.369) 

6 40 58.194  (58.027, 58.359) 56.623  (56.325, 56.895) 54.436  (53.926, 54.922) 

6 60 87.460  (87.203, 87.705) 60.890  (60.684, 61.101) 81.105  (80.678, 81.44) 

6 80 116.202  (115.874, 116.533) 56.752  (56.536, 56.974) 107.413  (106.462, 108.299) 

7 1.5 1.984  (1.979, 1.989) 1.731  (1.712, 1.747) 1.838  (1.827, 1.854) 

7 2 2.639  (2.633, 2.646) 2.523  (2.493, 2.557) 2.453  (2.431, 2.476) 

7 2.5 3.310  (3.302, 3.319) 3.321  (3.295, 3.35) 3.098  (3.076, 3.124) 

7 3 3.970  (3.96, 3.981) 3.986  (3.954, 4.021) 3.687  (3.663, 3.719) 

7 4 5.294  (5.281, 5.308) 5.354  (5.311, 5.402) 4.943  (4.904, 4.983) 

7 5 6.613  (6.595, 6.631) 6.644  (6.599, 6.699) 6.134  (6.086, 6.192) 

7 10 13.215  (13.181, 13.249) 13.419  (13.305, 13.53) 12.427  (12.334, 12.546) 

7 20 26.456  (26.398, 26.522) 26.754  (26.511, 26.989) 24.804  (24.614, 24.998) 

7 40 52.946  (52.807, 53.088) 52.323  (51.964, 52.697) 49.760  (49.403, 50.212) 

7 60 79.275  (79.081, 79.488) 58.316  (58.108, 58.518) 74.215  (73.268, 75.16) 

7 80 105.890  (105.604, 106.183) 53.973  (53.752, 54.189) 98.197  (97.521, 98.852) 
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Table 2. Estimated Interval Lengths for Weibull Modulus (𝑚) for 𝑛=8, 9, 10 and 20 

𝒏 𝒎 

MLE BW1 BW2 

𝑍 95% CI of 𝜇𝑍  𝑍 95% CI of 𝜇𝑍  𝑍 95% CI of 𝜇𝑍 

8 1.5 1.824  (1.82, 1.828) 1.576  (1.558, 1.595) 1.699  (1.687, 1.711) 

8 2 2.438  (2.431, 2.444) 2.325  (2.305, 2.35) 2.270  (2.252, 2.287) 

8 2.5 3.041  (3.034, 3.048) 3.042  (3.016, 3.064) 2.872  (2.848, 2.892) 

8 3 3.656  (3.647, 3.665) 3.674  (3.645, 3.704) 3.438  (3.414, 3.464) 

8 4 4.868  (4.856, 4.879) 4.953  (4.915, 4.994) 4.637  (4.599, 4.676) 

8 5 6.090  (6.077, 6.106) 6.127  (6.079, 6.177) 5.744  (5.708, 5.791) 

8 10 12.188  (12.156, 12.22) 12.296  (12.201, 12.392) 11.544  (11.446, 11.637) 

8 20 24.372  (24.318, 24.423) 24.461  (24.269, 24.649) 23.011  (22.849, 23.17) 

8 40 48.682  (48.565, 48.8) 48.268  (48.002, 48.563) 46.179  (45.813, 46.556) 

8 60 73.083  (72.911, 73.258) 56.143  (55.991, 56.292) 69.359  (69.074, 69.659) 

8 80 97.440  (97.204, 97.69) 51.766  (51.536, 51.982) 92.057  (91.249, 92.774) 

9 1.5 1.693  (1.689, 1.697) 1.477  (1.462, 1.493) 1.599  (1.588, 1.612) 

9 2 2.256  (2.251, 2.261) 2.208  (2.189, 2.227) 2.151  (2.132, 2.166) 

9 2.5 2.828  (2.821, 2.834) 2.829  (2.81, 2.85) 2.688  (2.67, 2.707) 

9 3 3.389  (3.382, 3.397) 3.416  (3.393, 3.437) 3.227  (3.203, 3.248) 

9 4 4.520  (4.51, 4.531) 4.555  (4.52, 4.588) 4.311  (4.282, 4.34) 

9 5 5.657  (5.645, 5.669) 5.715  (5.668, 5.75) 5.396  (5.361, 5.443) 

9 10 11.292  (11.27, 11.319) 11.494  (11.4, 11.57) 10.904  (10.828, 10.984) 

9 20 22.601  (22.552, 22.653) 22.842  (22.666, 23.002) 21.688  (21.521, 21.821) 

9 40 45.097  (45, 45.194) 45.254  (44.975, 45.619) 43.201  (42.922, 43.507) 

9 60 67.735  (67.583, 67.88) 54.238  (54.098, 54.371) 66.198  (65.733, 66.654) 

9 80 90.484  (90.283, 90.697) 50.060  (49.81, 50.327) 85.335  (84.809, 85.924) 

10 1.5 1.591  (1.587, 1.594) 1.405  (1.392, 1.417) 1.520  (1.508, 1.528) 

10 2 2.125  (2.12, 2.129) 2.079  (2.063, 2.093) 2.023  (2.01, 2.037) 

10 2.5 2.651  (2.645, 2.656) 2.642  (2.625, 2.659) 2.522  (2.507, 2.539) 

10 3 3.183  (3.177, 3.19) 3.191  (3.169, 3.215) 3.042  (3.019, 3.062) 

10 4 4.250  (4.241, 4.259) 4.286  (4.259, 4.311) 4.085  (4.06, 4.11) 

10 5 5.300  (5.288, 5.311) 5.360  (5.325, 5.399) 5.110  (5.074, 5.14) 

10 10 10.597  (10.575, 10.618) 10.757  (10.674, 10.826) 10.267  (10.195, 10.345) 

10 20 21.164  (21.121, 21.212) 21.532  (21.387, 21.667) 20.556  (20.442, 20.705) 

10 40 42.485  (42.394, 42.573) 42.803  (42.565, 43.049) 40.831  (40.554, 41.148) 

10 60 63.513  (63.389, 63.642) 52.596  (52.472, 52.712) 61.186  (60.498, 61.869) 

10 80 84.785  (84.596, 84.97) 48.616  (48.408, 48.875) 80.861  (80.362, 81.266) 

20 1.5 1.073  (1.071, 1.074) 1.021  (1.013, 1.028) 1.051  (1.046, 1.055) 

20 2 1.430  (1.428, 1.432) 1.434  (1.425, 1.44) 1.405  (1.399, 1.411) 

20 2.5 1.787  (1.784, 1.789) 1.796  (1.788, 1.804) 1.761  (1.753, 1.769) 

20 3 2.145  (2.142, 2.148) 2.155  (2.144, 2.164) 2.112  (2.101, 2.121) 

20 4 2.859  (2.855, 2.863) 2.865  (2.852, 2.878) 2.810  (2.798, 2.821) 

20 5 3.573  (3.568, 3.578) 3.583  (3.566, 3.601) 3.517  (3.499, 3.534) 

20 10 7.145  (7.134, 7.156) 7.180  (7.146, 7.211) 7.049  (7.02, 7.079) 

20 20 14.304  (14.285, 14.324) 14.359  (14.301, 14.429) 14.097  (14.033, 14.17) 

20 40 28.609  (28.569, 28.649) 28.251  (28.133, 28.361) 27.807  (27.686, 27.907) 

20 60 42.879  (42.818, 42.939) 40.032  (39.899, 40.178) 42.039  (41.721, 42.353) 

20 80 57.195  (57.11, 57.276) 40.194  (40.075, 40.299) 54.416  (54.067, 54.775) 

 

As shown in Tables 1 and 2 and Figures 3 and 4, the BW2 model generally outperforms the others by 

yielding the smallest values for the median interval length (𝑍̃) . The exceptional cases are 𝑚=60, 80 for all 

𝑛, and 𝑚=1.5 for 𝑛 >5, where BW1 model is the best method. These are the cases where 𝑚 is close to the 

uniform prior boundaries 1 and 100. The restriction of the prior that 𝑚 cannot take values below 1 and 

above 100 is likely to induce an effect of narrowing of the interval length. Figures 3-4 show that 

performance of the BW1 model becomes significantly better as 𝑚 approaches 1 or 100. 

 

The MLE method is the worst method according to 𝑍̃ values, however there is no statistical difference 

between the MLE method and the BW1 model for 2.5≤ 𝑚 ≤20 and all 𝑛, since the corresponding 

confidence intervals in Tables 1 and 2 intersect with each other. Also, by increasing 𝑛, the performances of 

all the three methods become closer to each other. 



300  Meryem YALCINKAYA, Burak BIRGOREN/ GU J Sci, 34 (1): 290-309 (2021) 

 

a) b) 

  
c) d) 

  
Figure 3. Expected Median Interval Lengths for (a) 𝑚=1.5 (b) 𝑚 =2.5, (c) 𝑚 =3, (d) 𝑚 =5 

 

a) b) 

  
c) d) 

  
Figure 4. Expected Median Interval Lengths for (a) 𝑚=10 (b) 𝑚=20, (c) 𝑚=40, (d) 𝑚=80 

 

Having established the superior performance of the Bayesian models, a more practical way to compare in 

terms of engineering costs is to calculate the relative sample sizes needed to obtain approximately the same 

𝑍̃ values. For this purpose, the BW2 model has been chosen as the reference method for 𝑚 <60 since it 

produces the smallest values for the median interval length (𝑍̃)  in the majority of the cases. Similarly, the 
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BW1 model has the smallest lengths, and hence is the reference method for 𝑚 ≥ 60. Tables 3 and 4 show 

the results for a comparison of the three methods used where the reference method, as described above, is 

the method that produces the minimum sample size in each row. The sample sizes required by the other 

two methods that produce the same or very similar interval lengths as the reference method have been 

calculated and listed in the same row. 

 

First, let’s examine the graph of 𝑚 = 40 in Figure 4(c). For 𝑛 = 3, the 𝑍̃ value of the BW2 model is 

approximately 72; and this value is achieved by the MLE method at 𝑛 = 4 and by the BW1 at 𝑛 = 3. This 

means that the BW1 and BW2 models show approximately the same performance, but as compared to the 

MLE method, a saving of (4-3)/4 = 25% is achieved by the BW2 model in testing costs for reliability 

analysis. This is reflected at the row with 𝑚 = 40 and the BW2 column’s value at 𝑛 = 3 in Table 3 with a 

0% saving as compared to the BW1 model and 25% saving as compared to the MLE method. Similarly, as 

shown in Table 4, the 𝑍̃ value of the BW1 model is 67 for 𝑛 = 4 and 𝑚 = 60, and this value is 

approximately achieved by the MLE method at 𝑛=10 indicating a saving of (10-4)/10 = 60% if the BW1 

model were used, and is achieved by the BW2 model at 𝑛=9 indicating a saving of (9-4)/9 = 56% if the 

BW1 model were used.  

 

According to Table 3, the percent savings achieved by using the BW2 model is at least 9% for of 3 ≤ 𝑚 ≤
40 and 𝑛 ≤ 10. For 𝑚 = 1.5, there is almost no difference between the BW1 and BW2 models for 𝑛 ≤ 6, 

and the BW1 model starts to perform better for 𝑛 > 6. Similarly, Table 4 indicates a minimal saving of 9% 

for 𝑛 ≤ 20 when the BW1 model is used.  
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Table 3. Comparison of median expected lengths in terms of sample size (Ref: BW2) 

Reference: 

BW2 
Equivalent n to produce 𝑍̃  
 

 

 Reference: 

BW2 
Equivalent n to produce 𝑍̃  

BW1 MLE  BW1 MLE 

𝑚 𝑛 𝑍  𝑛  % Saving  𝑛   % Saving  𝑚 𝑛 𝑍  𝑛   % Saving  𝑛  % Saving 

1.5 3 2.91 4 0.25 4 0.25  5 3 9.355 4 0.25 4 0.25 
1.5 4 2.446 4 0.00 5 0.20  5 4 8.305 5 0.20 5 0.20 

1.5 5 2.182 5 0.00 6 0.17  5 5 7.365 6 0.17 6 0.17 
1.5 6 1.975 6 0.00 7 0.14  5 6 6.733 7 0.14 7 0.14 

1.5 7 1.838 6 -0.17 8 0.13  5 7 6.134 8 0.13 8 0.13 
1.5 8 1.699 7 -0.14 9 0.11  5 8 5.744 9 0.11 9 0.11 

1.5 9 1.599 8 -0.13 10 0.10  5 9 5.396 10 0.10 10 0.10 
1.5 10 1.52 9 -0.11 11 0.09  5 10 5.11 11 0.09 11 0.09 
1.5 20 1.051 19 -0.05 20 0.00  5 20 3.517 20 0.00 20 0.00 

2 3 3.838 4 0.25 4 0.25  10 3 18.381 5 0.40 4 0.25 
2 4 3.297 5 0.20 5 0.20  10 4 16.541 5 0.20 5 0.20 

2 5 2.909 5 0.00 6 0.17  10 5 14.982 6 0.17 6 0.17 
2 6 2.664 6 0.00 7 0.14  10 6 13.647 7 0.14 7 0.14 
2 7 2.453 7 0.00 8 0.13  10 7 12.427 8 0.13 8 0.13 

2 8 2.27 8 0.00 9 0.11  10 8 11.544 9 0.11 9 0.11 
2 9 2.151 9 0.00 10 0.10  10 9 10.904 10 0.10 10 0.10 

2 10 2.023 11 0.09 11 0.09  10 10 10.267 11 0.09 11 0.09 
2 20 1.405 20 0.00 20 0.00  10 20 7.049 20 0.00 20 0.00 

3 3 5.715 4 0.25 4 0.25  20 3 36.991 4 0.25 4 0.25 
3 4 5.014 5 0.20 5 0.20  20 4 33.349 5 0.20 5 0.20 
3 5 4.429 6 0.17 6 0.17  20 5 29.666 6 0.17 6 0.17 

3 6 4.03 7 0.14 7 0.14  20 6 27.115 7 0.14 7 0.14 
3 7 3.687 8 0.13 8 0.13  20 7 24.804 8 0.13 8 0.13 

3 8 3.438 9 0.11 9 0.11  20 8 23.011 9 0.11 9 0.11 
3 9 3.227 10 0.10 10 0.10  20 9 21.688 10 0.10 10 0.10 
3 10 3.042 11 0.09 11 0.09  20 10 20.556 11 0.09 11 0.09 

3 20 2.112 20 0.00 20 0.00  20 20 14.097 20 0.00 20 0.00 

4 3 7.612 4 0.25 4 0.25  40 3 71.898 3 0.00 4 0.25 
4 4 6.608 5 0.20 5 0.20  40 4 66.475 4 0.00 5 0.20 
4 5 5.894 6 0.17 6 0.17  40 5 59.558 5 0.00 6 0.17 
4 6 5.39 7 0.14 7 0.14  40 6 54.436 6 0.00 7 0.14 

4 7 4.943 8 0.13 8 0.13  40 7 49.76 8 0.13 8 0.13 
4 8 4.637 9 0.11 9 0.11  40 8 46.179 9 0.11 9 0.11 

4 9 4.311 10 0.10 10 0.10  40 9 43.201 10 0.10 10 0.10 
4 10 4.085 11 0.09 11 0.09  40 10 40.831 11 0.09 11 0.09 

4 20 2.81 20 0.00 20 0.00  40 20 27.807 20 0.00 21 0.05 

 

Table 4. Comparison of median expected lengths in terms of sample size (Ref: BW1) 

Reference: 

BW1 
Equivalent n to produce 𝑍̃  Reference: 

BW1 
Equivalent n to produce 𝑍̃ 

BW2 MLE  BW2 MLE 

𝑚 𝑛 𝑍  𝑛  % Saving  𝑛  % Saving  𝑚 𝑛 𝑍  𝑛  % Saving  𝑛 % Saving 

60 3 72.549 8 0.63 9  0.67  80 3 70.342 14 0.79 15  0.80 
60 4 67.472 9  0.56 10  0.60  80 4 64.329 16 0.75 17  0.76 
60 5 63.706 10  0.50 11  0.55  80 5 60.164 18  0.72 19  0.74 

60 6 60.890 11  0.45 11  0.45  80 6 56.752 19  0.68 21  0.71 
60 7 58.316 12  0.42 12  0.42  80 7 53.973 21  0.67 22  0.68 

60 8 56.143 12  0.33 13  0.38  80 8 51.766 22  0.64 23  0.65 
60 9 54.238 13  0.31 14  0.36  80 9 50.060 22  0.59 24  0.63 
60 10 52.596 14  0.29 15  0.33  80 10 48.616 23  0.57 24  0.58 

60 20 40.032 22  0.09 22  0.09  80 20 40.194 27  0.26 28  0.29 

 

Figure 5 plots median confidence intervals of the methods for 𝑚= 1.5, 10 and 80, that is, any lower or upper 

bound in the plots is the median of the lower or upper bounds of 10,000 confidence intervals estimated by 

Monte Carlo simulations. They show that the BW2 model generates confidence intervals that are more 
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centered around 𝑚 as compared to the MLE and the BW1. This phenomenon is particularly noticeable for 

small samples.  

 

a) 

 

b) 

 

c) 

 

Figure 5. The position of estimated confidence intervals according to a) 𝑚=1.5 b) 𝑚=10 and c) 𝑚=80 

 

4. VERIFICATION OF THE SIMULATION 

  

Verification of the simulation results was carried out by an experimental study cited in the literature [73]. 

The experimental study was on the fracture strengths of 19 identical composite specimens. The composite 

specimens were prepared from quasi-isotropic carbon– epoxy sheets with (0°)
3
 configuration, 0.89 mm 

thickness, and 295 g/m2 weight. The tension experiments were carried out on an Instron 8516+universal 

testing machine according to ASTM D3039 standard [73]. A crosshead speed of 1.33 mm/min was used 

and room temperature conditions existed during the tests. The fracture strength values measured are 

presented in Table 5. 
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Table 5. Fracture strength values from tension experiments 
Test No 1 2 3 4 5 6 7 8 9 10 

Fracture strength 

(MPa) 532.7 502.5 442 473 519 502.7 477 510 522 552 

           Test No 11 12 13 14 15 16 17 18 19  

Fracture strength 

(MPa) 

522 439 513.6 497.5 521.6 450.9 476.5 507.3 463.5  

 

In order to diversify the application study in terms of sample size, besides the entire sample, the random 

subsets of size of 3, 5 and 10 were drawn from the sample of 19 observations. The data set consists of 

{513.6, 442, 519} for n=3, {510, 521.6, 442, 439, 519} for n=5 and {439, 521.6, 513.6, 450.9, 442, 463.5, 

473, 519, 476.5, 477} for n=10. By the three methods, the confidence intervals of 𝑚 were estimated and 

the result of the best method for each 𝑛 was shown in bold in Table 6.   

 

Table 6. The experimental results for n=3,5,10 and 19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As can be seen in Table 6, the experimental results are quite similar to simulation results and the BW2 

model outperforms the other methods. Especially for 𝑛 = 3, it yields a much narrower interval than those 

of the MLE and BW1. As 𝑛 increases, performances of the methods become closer to each other, but the 

BW2 model maintains its superiority by a small difference in estimated interval length.  

 

5. RESULTS 

 

This study compares the performances of the two proposed Bayesian models against the Maximum 

Likelihood Method (MLE) for estimating confidence intervals of the Weibull modulus in small samples. 

The first Bayesian model (BW1) assumes that the Weibull modulus has a uniform prior on the interval of 

(1, 100). The second Bayesian model (BW2) assumes that the Weibull modulus is between 1 and 100 with 

a probability, 1-𝛼. Non-informative priors are used for the scale parameter.  

 

In the BW1 model, use of uniform prior on the interval of (1, 100) was recently proposed in the materials 

science literature, and the lower and uppers limits, 1 and 100, was supported by practical and theoretical 

studies in the literature. The BW2 model is a relaxed version of the BW1 model, assigning a high probability 

(1-𝛼) to the event that Weibull modulus is in this interval, instead of requiring it to be in the interval with 

a probability of 1, which is the case in the BW1 model. 

 

The Weibull modulus values between 1.5 and 80, and sample size values between 3 and 20 are considered 

in this study, and the simulations showed that the Bayesian models always have better performance than 

the MLE method. In general, the BW1 model is the best method for the Weibull modulus values close to 1 

𝒏 Method 
Confidence Interval of 𝒎 (𝜶 = 𝟎. 𝟎𝟓) 

Lower Bound Upper Bound Interval Length 

3 

MB 2.463 35.720 33.257 

BW1 2.919 41.927 39.008 

BW2 0.409 25.774 25.365 

5 

MB 4.890 27.463 22.573 

BW1 5.014 30.329 25.315 

BW2 2.256 23.490 21.234 

10 

MB 8.536 25.191 16.655 

BW1 9.091 25.595 16.504 

BW2 7.442 23.318 15.876 

19 

MB 11.980 25.132 13.152 

BW1 12.162 25.205 13.043 

BW2 11.171 24.021 12.85 
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and 100, and the BW2 model is the best for the other values between 1 and 100, particularly for 2≤ 𝑚 ≤40. 

The performances of the Bayesian models become better as the sample size decreases, particularly for 

𝑛 ≤10, which is an expected result from the general Bayesian theory. In addition, the BW2 model generates 

confidence intervals that are more centered around 𝑚. This result is important for engineers, because they 

usually expect the unknown parameter to lie at or near the center of the estimated interval. 

 

In summary, this study proposes the BW2 model for estimating the confidence (credible) interval of 

Weibull modulus, especially for small sample sizes since the BW2 model has more relaxed assumptions 

than the BW1 model, and performs better unless the Weibull modulus values close to 1 and 100. 

 

There are many alternative Bayesian methods that can be used for Weibull applications in materials science 

such as recursive methods. This study demonstrates that Bayesian methods have a promising future in 

reliability studies in materials science, because, they attempt to capture the existing domain knowledge, 

such as increasing failure rates, and reflect it in the estimation process. This results in higher estimation 

precision.  

 

A final word of caution is that while using priors based on unfounded assumptions and non-existing 

knowledge may result in Bayesian methods with superior performances, the obtained results would likely 

be non-representative of the domain and misleading. In Bayesian analysis, priors should reflect the true 

domain knowledge. In this study, care has been taken to ensure compliance to this general rule. 
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